K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

Thay x=-4 vào f(x) ta có

5/4.(-4)a + a + 1 = 0 ⇒ -5a + a + 1 = 0

⇒ -4a + 1 = 0 ⇒ a = 1/4. Chọn C

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

14 tháng 8 2021

Mình cảm ơn ạ

Bài 9:

a: f(-4)=0

=>-4(m-1)+3m-1=0

=>-4m+4+3m-1=0

=>-m+3=0

=>m=3

b: f(-5)=-1

=>-5(m-1)+3m-1=-1

=>-5m+5+3m-1=-1

=>-2m+4=-1

=>-2m=-5

=>m=5/2

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

3 tháng 3 2020

a) Ta có \(f\left(x\right)=ax+b\)

+) \(f\left(1\right)=1\)

=> \(f\left(1\right)=a\cdot1+b=1\)

=> \(f\left(1\right)=a+b=1\)(1)

+) \(f\left(2\right)=4\)

=> \(f\left(2\right)=a\cdot2+b=4\)

=> \(f\left(2\right)=2a+b=4\)(2)

Từ (1) và (2) => \(\orbr{\begin{cases}a+b=1\\2a+b=4\end{cases}}\)

=> \(a-2a=1-4\)

=> \(-a=-3\)

=> \(a=3\)

Thay a = 3 vào ta có : \(\orbr{\begin{cases}3+b=1\\2\cdot3+b=4\end{cases}}\)

=> \(\orbr{\begin{cases}3+b=1\\6+b=4\end{cases}}\)

=> b = -2

Vậy a = 3 và b = -2

b) Thay a = 3 và b = -2 vào đa thức \(f\left(x\right)=ax+b\)ta có :

\(f\left(x\right)=3\cdot x+\left(-2\right)=0\)

=> \(3x+\left(-2\right)=0\)

=> \(3x=0-\left(-2\right)\)

=> \(3x=0+2\)

=> \(3x=2\)

=> \(x=\frac{2}{3}\)

Vậy nghiệm của đa thức \(f\left(x\right)=\frac{2}{3}\).

3 tháng 3 2020

Cảm ơn bn nha!