K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

Đáp án là D

α + β =  90 0  ⇒ cosβ = sinα

15 tháng 6 2021

1.a) \(4cos\dfrac{\alpha}{2}.cos\dfrac{\beta}{2}.cos\dfrac{f}{2}\)

\(=\dfrac{1}{2}.4\left[cos\left(\dfrac{\alpha-\beta}{2}\right)+cos\left(\dfrac{\alpha+\beta}{2}\right)\right].cos\dfrac{f}{2}\)

\(=2.cos\left(\dfrac{\alpha-\beta}{2}\right)cos\dfrac{f}{2}+2.cos\left(\dfrac{\alpha+\beta}{2}\right).cos\dfrac{f}{2}\)

\(=cos\left(\dfrac{\alpha-\left(\beta+f\right)}{2}\right)+cos\left(\dfrac{\alpha-\beta+f}{2}\right)+cos\left(\dfrac{\alpha+\beta-f}{2}\right)+cos\left(\dfrac{\alpha+\beta+f}{2}\right)\)

\(=cos\left(\dfrac{2\alpha-\pi}{2}\right)+cos\left(\dfrac{\pi-2\beta}{2}\right)+cos\left(\dfrac{\pi-2f}{2}\right)+cos\left(\dfrac{\pi}{2}\right)\)

\(=cos\left(-\dfrac{\pi}{2}+\alpha\right)+cos\left(\dfrac{\pi}{2}-\beta\right)+cos\left(\dfrac{\pi}{2}-f\right)\)

\(=sin\alpha+sin\beta+sinf\) (đpcm)

15 tháng 6 2021

a2) \(1+4sin\dfrac{\alpha}{2}.sin\dfrac{\beta}{2}.sin\dfrac{f}{2}\)

\(=1+2\left[cos\left(\dfrac{\alpha-\beta}{2}\right)-cos\left(\dfrac{\alpha+\beta}{2}\right)\right].sin\dfrac{f}{2}\)

\(=1+2.cos\left(\dfrac{\alpha-\beta}{2}\right).sin\dfrac{f}{2}-2.cos\left(\dfrac{\alpha+\beta}{2}\right).sin\dfrac{f}{2}\)

\(=1+sin\left(\dfrac{f-\alpha+\beta}{2}\right)+sin\left(\dfrac{a-\beta+f}{2}\right)-sin\left(\dfrac{f-\left(\alpha+\beta\right)}{2}\right)-sin\left(\dfrac{\alpha+\beta+f}{2}\right)\)

\(=1+sin\left(\dfrac{\pi-2\alpha}{2}\right)+sin\left(\dfrac{\pi-2\beta}{2}\right)-sin\left(\dfrac{2f-\pi}{2}\right)-sin\left(\dfrac{\pi}{2}\right)\)

\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+sin\left(\dfrac{\pi}{2}-\beta\right)+sin\left(\dfrac{\pi}{2}-f\right)\)

\(=cos\alpha+cos\beta+cosf\) (đpcm)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có α + β = π nên sinα = sin(π – α) = sinβ, suy ra sin2α = sin2β.

a) A = sin2α + cos2β = sin2β + cos2β = 1.

b) Ta có α + β = π nên cosα = – cos(π – α) = – cosβ.

Khi đó, B = (sinα + cosβ)2 + (cosα + sinβ)2

= (sinβ + cosβ)2 + (– cosβ + sinβ)2

= (sinβ + cosβ)2 + (sinβ – cosβ )2

= sin2β + 2sinβ cosβ + cos2β + sin2β – 2sinβ cosβ + cos2β

= 2(sin2β + cos2β)

= 2 . 1 = 2.

Chọn A

10 tháng 1 2022

Vì 0 độ<α<β<90 độ nên:

0<sinα<sinβ, cosα>cosβ>0

0<tanα<tanβ, cotα>cotβ>0

=>cosα<cosβ => cosα-cosβ<0 => chọn C.

 

11 tháng 2 2018

Chọn đáp án A

7 tháng 9 2023

\(sin\alpha=cos\beta=\dfrac{AB}{BC}\)

\(tan\alpha=cot\beta=\dfrac{AB}{AC}\)

8 tháng 9 2023

\(\alpha+\beta=90^o\)

\(\Rightarrow\beta=90^o-\alpha\)

Theo đề bài :

\(sin\alpha=cos\beta\)

\(\Rightarrow sin\alpha=cos\left(90^o-\alpha\right)\)

mà \(\alpha;90^o-\alpha\) là 2 góc phụ nhau

\(\Rightarrow cos\left(90^o-\alpha\right)=sin\alpha\left(dpcm\right)\)

Tương tự \(tan\alpha=cot\beta=cot\left(90^o-\alpha\right)\)

21 tháng 3 2019

* Ta có  sin 2 α + cos 2 α = 1 ⇒ sin 2 α + 16 25 = 1 ⇒ sin 2 α = 9 25

Mà  sin α < 0 ⇒ sin α = - 3 5

* Vì  sin 2 β + cos 2 β = 1 ⇒ 9 16 + cos 2 β = 1 ⇒ c o s 2 β = 7 16

  cos β > 0 ⇒ cos β = 7 4

*  sin α + β = sin α . cos β + c o s α . sin β = - 3 5 . 7 4 + 4 5 . 3 4 = 12 - 3 7 20

5 tháng 7 2018

Chọn đáp án B.

7 tháng 5 2018

* Dựng \(\Delta OAB\)vuông tại A có: \(\widehat{AOB}=\alpha\)

Dựng \(\Delta OBC\)vuông tại B có: \(\widehat{BOC}=\beta\)và OC = 1 (đơn vị độ dài)

Từ C hạ \(CD\perp OA\)tại D \((D\in OA)\)

Từ B hạ \(BH\perp CD\)tại H (\(H\in CD\))

Ta có: \(\widehat{AOB}=\widehat{BCD}=\widehat{BCH}=\alpha\)(góc có cạnh tương ứng vuông góc)

Xét \(\Delta BOC\)có: \(\sin\beta=\frac{BC}{OC}=\frac{BC}{1}\Rightarrow BC=\sin\beta\)

\(\cos\beta=\frac{OB}{OC}=\frac{OB}{1}\Rightarrow OB=\cos\beta\)

Xét \(\Delta OAB\)có: \(\sin\alpha=\frac{AB}{OB}=\frac{AB}{\cos\beta}\Rightarrow AB=\sin\alpha.\cos\beta\)

Xét \(\Delta BCH\)có: \(\cos\alpha=\frac{CH}{BC}=\frac{CH}{\sin\beta}\Rightarrow CH=\cos\alpha.\sin\beta\)

Xét \(\Delta ODC\)có: \(\sin\left(\alpha+\beta\right)=\frac{DC}{OC}=\frac{DC}{1}=DC\)

Mà DC = DH + CH = AB + CH 

=> \(\sin\left(\alpha+\beta\right)=\sin\alpha.\cos\beta+\cos\alpha.\sin\beta\)(1)

Cách dựng tương đối giống ở trên khác ở chỗ : OB =1 (đơn vị độ dài), \(\widehat{OCB}=90^o\)\(\widehat{BOC}=\beta,\widehat{AOB}=\alpha-\beta\),\(\widehat{AOC}=\alpha\)

Ta có: \(\widehat{BCH}=\widehat{BCD}=\widehat{AOC}=\alpha\)(góc có cạnh tương ứng vuông góc)

Xét \(\Delta BOC\)có: \(\sin\beta=\frac{BC}{OB}=\frac{BC}{1}=BC\Rightarrow BC=\sin\beta\)

\(\cos\beta=\frac{OC}{OB}=\frac{OC}{1}=OC\Rightarrow OC=\cos\beta\)

Xét \(\Delta OCD\)có:

\(\sin\alpha=\frac{CD}{OC}=\frac{CD}{\cos\beta}\Rightarrow CD=\sin\alpha.\cos\beta\)

Xét \(\Delta BCH\)có:

\(\cos\alpha=\frac{CH}{BC}=\frac{CH}{\sin\beta}\Rightarrow CH=\cos\alpha.\sin\beta\)

Xét \(\Delta OAB\)có:

\(\sin\left(\alpha-\beta\right)=\frac{AB}{OB}=\frac{AB}{1}=AB\)

Mà AB=DH= CD -CH = \(\sin\alpha.\cos\beta-\cos\alpha.\sin\beta\)

=> \(\sin\left(\alpha-\beta\right)=\sin\alpha.\cos\beta-\cos\alpha.\sin\beta\)(2)

Cộng từng vế của (1) và (2) ta được:

\(\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)=2.\sin\alpha.\cos\beta\)=> \(\sin\alpha.\cos\beta=\frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2}\)(đpcm)

16 tháng 12 2018

Chọn đáp án D