K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Ta có  và 

Theo giả thiết 

Chọn B.
 

 

18 tháng 7 2017

Đáp án C

Phương trình hoành độ giao điểm của đường cong y = tan x trục hoành là tan x = 0 ⇔ x = k π  

V = π ∫ 0 π 4 tan 2 x d x = π ∫ 0 π 4 1 cos 2 x - 1 d x = π tanx - x 0 π 4 = π 1 - π 4

1 tháng 2 2017

Tìm hoành độ giao điểm của hai dồ thị, ta có:

( x   -   1 ) e 2 x   =   0  => x = 1

Vậy thể tích của khối tròn xoay thu được khi quay (H) quanh Ox được tính bởi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đặt: u = ( x - 1 ) 2 , d v   e 4 x d x . Ta có du = 2(x -1)dx và v   =   e 4 x 4 .

Áp dụng công thức tích phân từng phần ta được

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đặt u 1   =   x   -   1 ,   d v 1 =   e 4 x d x , ta có d u 1   =   d x ,  v 1   =   e 4 x 4

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án A.

9 tháng 2 2019

Đáp án C

8 tháng 10 2017

17 tháng 11 2018

8 tháng 11 2017

Đáp án C.

NV
24 tháng 3 2023

\(\left(x+1\right)e^x=0\Rightarrow x=-1\)

\(S=\int\limits^0_{-2}\left|\left(x+1\right)e^x\right|dx=-\int\limits^{-1}_{-2}\left(x+1\right)e^xdx+\int\limits^0_{-1}\left(x+1\right)e^xdx\)

\(=\dfrac{2e-2}{e^2}\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

1.

\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)

\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)

\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\) 

 

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

2.

\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)

\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)

\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)

\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)

 

 

4 tháng 9 2018