K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau

6 tháng 11 2017

2x=3y=5z

chia 3 cái này cho 30

=> xét 2 TH

=> đpcm :D

6 tháng 11 2017

vãi sr

tim

ko phải đpcm :D

15 tháng 1 2018

b) 5x=2y ; 2x=3z <=> x/10=y/4=z/15

Đặt k ta có : \(\frac{x}{10}=\frac{y}{4}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}\frac{x}{10}=k\Rightarrow x=10k\\\frac{y}{4}=k\Rightarrow y=4k\\\frac{z}{15}=k\Rightarrow z=15k\end{cases}}\)

x.y=10k.4k=40.k2=90

=> k2=2,25

=> k=1,5

x=10k=10.1,5=15

y=4k=4.1,5=6

z=15k=15.1,5=22,5

Vậy ...

b)Ta có:5x=2y => \(\frac{x}{2}\)\(\frac{y}{5}\)<=> \(\frac{x}{6}\)\(\frac{y}{15}\)(1)

             2x=3z => \(\frac{x}{3}\)=  \(\frac{z}{2}\)<=> \(\frac{x}{6}\)\(\frac{z}{4}\)(2)

Từ (1) và (2) suy ra: \(\frac{x}{6}\)\(\frac{y}{15}\)\(\frac{z}{4}\)

Đặt  \(\frac{x}{6}\)\(\frac{y}{15}\)\(\frac{z}{4}\)= k

Suy ra:x=6k,y=15k,z=4k

Ta có: xy=6k.15k=90k2=90

=> k2=1

=> k=1 hoặc k=-1

Nếu k=1 thì x=6,y=15,z=4

Nếu k=-1 thì x=-6,y=-15,z=-4

Vậy.....

Chúc các bạn hk tốt!

a: Ta có: 2x=3y=5z

=>2x/30=3y/30=5z/30

=>x/15=y/10=z/6

Trường hợp 1: x-2y=5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{5}{-5}=-1\)

Do đó: x=-15; y=-10; z=-6

Trường hợp 2: x-2y=-5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{-5}{-5}=1\)

Do đó: x=15; y=10; z=6

b: Ta có: 5x=2y

nên x/2=y/5

=>x/6=y/15

Ta có: 2x=3z

nên x/3=z/2

=>x/6=z/4

=>x/6=y/15=z/4

Đặt x/6=y/15=z/4=90

=>x=6k; y=15k; z=4k

Ta có; xy=90

\(\Leftrightarrow90k^2=90\)

\(\Leftrightarrow k^2=1\)

Trường hợp 1: k=1

=>x=6; y=15; z=4

TRường hợp 2: k=-1

=>x=-6; y=-15; z=-4

11 tháng 7 2019

1a) \(0,31:0,91=x:\frac{49}{3}\)

=> \(\frac{0,31}{0,91}=\frac{3x}{49}\)

=> \(3x=\frac{3}{7}.49\)

=> \(3x=21\)

=> \(x=21:3=7\)

b) \(6,88:x=12:27\)

=> \(\frac{6,88}{x}=\frac{12}{27}\)

=> \(x=6,88:\frac{4}{9}\)

=> \(x=15,48\)

c) \(\frac{25}{3}:\frac{35}{3}=13:2x\)

=> \(\frac{13}{2x}=\frac{5}{7}\)

=> \(2x=13:\frac{5}{7}\)

=> \(2x=\frac{91}{5}\)

=> \(x=\frac{91}{5}:2=\frac{91}{10}\)

d) \(\left(x-1\right):24,5=5:8,75\)

=> \(\frac{x-1}{24,5}=\frac{5}{8,75}\)

=> \(x-1=\frac{4}{7}.24,5\)

=> \(x-1=14\)

=> \(x=14+1=15\)

11 tháng 7 2019

2a) Ta có: \(\frac{x}{y}=\frac{5}{7}\) => \(\frac{x}{5}=\frac{y}{7}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\)

=> \(\hept{\begin{cases}\frac{x}{5}=0,34\\\frac{y}{7}=0,34\end{cases}}\) => \(\hept{\begin{cases}x=0,34.5=1,7\\y=0,34.7=2,38\end{cases}}\)

Vậy x = 1,7; y = 2,38

b) Ta có: \(\frac{x}{y}=-\frac{3}{7}\) => \(\frac{x}{-3}=\frac{y}{7}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{x}{-3}=\frac{y}{7}=\frac{x-y}{-3-7}=\frac{-40}{-10}=4\)

=> \(\hept{\begin{cases}\frac{x}{-3}=4\\\frac{y}{7}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.\left(-3\right)=-12\\y=4.7=28\end{cases}}\)

vậy x = -12; y = 28

c) Ta có: \(\frac{x}{y}=\frac{3}{5}\) => \(\frac{x}{3}=\frac{y}{5}\)

Đặt : \(\frac{x}{3}=\frac{y}{5}=k\) => \(\hept{\begin{cases}x=3k\\y=5k\end{cases}}\) (*)

Khi đó, ta có: xy = 1215

hay 3k. 5k = 1215

=> 15k2 = 1215

=> k2 = 1215 : 15 = 81

=> k = \(\pm\)

Thay k = \(\pm\)9 vào (*), ta được:

+) x = 3. (\(\pm\)9) = \(\pm\)27

+) y = 5. (\(\pm\)9) = \(\pm\)45

Vậy ...

10 tháng 1 2016

\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5

Áp dụng tính chất DTSBN ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)

x/1/2 = -30 => x = -15

y/1/3 = -30 => y = -10

z/1/5 = -30 => z = -6

TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)

x/1/2 = 30 => x = 15

y/1/3 = 30 => y = 10

z/1/5 = 30 => z=  6

 

10 tháng 1 2016

a,

2x=3y=5z

=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)

mà l x-2y l =5

=>x-2y=5 hoặc x-2y=-5

nếu x-2y=5

=>x/15=2y/20=x-2y/15-20=5/-5=-1

=>x=-15

=>y=-10

=>z=-6

nếu x-2y=-5

=>x/15=2y/20=x-2y=-5/-5=1

=>x=15

=>y=10

=>z=6

còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm  ! đăng câu khác mik làm tiếp cho !

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...