Cho a,b thuộc N* biết : a >2 ; b > 2
chứng minh : a + b < a.b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a > 2 = > a - 2 > 0
b > 2 = > b - 2 > 0
=> (a - 2)(b - 2) > 0
=> ab - 2a - 2b + 4 > 0
=> ab + 4 - 2(a + b) > 0
a > 2; b > 2
=> ab > 2.2 = 4
=> ab + ab > ab + 4 > 2(a + b)
=> 2ab > 2(a + b)
=> ab > a + b
vậy đề bài có vấn đề :v
a > 2 = > a - 2 > 0
b > 2 = > b - 2 > 0
=> (a - 2)(b - 2) > 0
=> ab - 2a - 2b + 4 > 0
=> ab + 4 - 2(a + b) > 0
a > 2; b > 2
=> ab > 2.2 = 4
=> ab + ab > ab + 4 > 2(a + b)
=> 2ab > 2(a + b)
=> ab > a + b. (Đpcm)
a>2 => a lớn hơn hoặc bằng 3
b>2 => b lớn hơn hoặc 3
= > a+ b lớn hơn hoặc bằng 6
=> a.b lớn hơn hoặc bằng 9
=> a+b nhỏ hơn a.b
+ Nếu a < b thì a + b < b + b
=> a + b < 2.b < a.b (vì a > 2)
+ Nếu a = b thì a + b = b + b
=> a + b = 2.b < a.b (vì a > 2)
+ Nếu b > a thì a + b < b + b
=> a + b < 2.b < a.b (vì a > 2)
Vậy với a > 2; b > 2 thì a + b < a.b (đpcm)
Nếu muốn a.b < a + b thì a b nhân nhau phải có a hoặc b bằng 1:
a. 1 = a, b. 1 = b
Nhưng a > 2, b > 2.
Nên không có trường hợp 1 nêu trên xảy ra.
Vậy:
=> a + b < a.b nếu a > 2 ; b > 2