a) 2+4+6...+2. ( n - 1) + 2n= 210
b) 1+3+5+... + ( 2n - 1) =225
Giúp với ạ, đang cần gấp!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2 + 4 + 6 + ... + 2(n - 1) + 2n = 210
<=> 2[1 + 2 + 3 + ... + (n - 1) + n] = 210
<=> 1 + 2 + 3 + ... + n = 105
<=> [(n - 1) : 1 + 1)(n + 1) : 2 = 105
<=> n(n + 1) = 210
<=> n(n + 1) = 14.15
=> n = 14
Vậy n = 14
b) Ta có : 1 + 3 + 5 + ... + (2n - 1) = 225
<=> [(2n - 1 - 1) : 2 + 1](2n - 1 + 1) : 2 = 225
<=> n2 = 225
<=> n2 = 152
<=> n = 15
Vậy n = 15
a) \(2^n=8\)
\(\Rightarrow2^n=2^3\)
\(\Rightarrow n=3\)
b) \(5^{n+1}=125\)
\(\Rightarrow5^{n+1}=5^3\)
\(\Rightarrow n+1=3\)
\(\Rightarrow n=3-1=2\)
c) Mình không rõ đề:
d) \(2\cdot7^{n-1}+3=101\)
\(\Rightarrow2\cdot7^{n-1}=101-3\)
\(\Rightarrow2\cdot7^{n-1}=98\)
\(\Rightarrow7^{n-1}=\dfrac{98}{2}\)
\(\Rightarrow7^{n-1}=49\)
\(\Rightarrow7^{n-1}=7^2\)
\(\Rightarrow n-1=2\)
\(\Rightarrow n=1+2=3\)
e) \(3\cdot5^{2n+1}-6^2=339\)
\(\Rightarrow3\cdot5^{2n+1}=339+36\)
\(\Rightarrow3\cdot5^{2n+1}=375\)
\(\Rightarrow5^{2n+1}=125\)
\(\Rightarrow5^{2n+1}=5^3\)
\(\Rightarrow2n+1=3\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=\dfrac{2}{2}=1\)
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
1 . tìm giá trị x
\(\left(x+1\right)+\left(x+4\right)+....+\left(x+28\right)=115.\)
\(\Rightarrow\left(x+x+x+....x\right)+\left(1+4+..+28\right)=115\)
\(\Rightarrow10x+\left(28+1\right).10:2=115\)
\(\Rightarrow10x+145=115\)
\(\Rightarrow10x=115-145=-30\)
\(\Rightarrow x=-30:10=-3\)
Bai 1
so so hang la: [(28+x)-(x+1)]/3+1= 10 so hang
tong =[(x+1)+(x+28)]*10/2=(2x+29)*10/2=115
(2x+29)*5=115
2x+29=115/5=23
2x=23-29=-6
x=-3
\(\left(\dfrac{1}{4}\right)^{2n}=\left(\dfrac{1}{8}\right)^2\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2.2n}=\left(\dfrac{1}{2}\right)^{3.2}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{4n}=\left(\dfrac{1}{2}\right)^6\)
\(\Rightarrow4n=6\)
\(\Rightarrow n=\dfrac{6}{4}=\dfrac{3}{2}\)
a: Số số hạng là:
(2n-2):2+1=n(số)
Theo đề, ta có:
\(\left(2n+2\right)\cdot\dfrac{n}{2}=210\)
\(\Leftrightarrow n\left(n+1\right)=210\)
\(\Leftrightarrow n=14\)