a ) a/b = 1/3 và a - 2b = 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{a-1}{2}=\frac{2\left(b-2\right)}{2.3}=\frac{3\left(x-3\right)}{3.4}\)
\(\Rightarrow\frac{a-1}{2}=\frac{2b-4}{6}=\frac{3x-9}{12}\)
Mà đề ra: \(a-2b+3c=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{a-1}{2}=\frac{2b-4}{6}=\frac{3c-9}{12}=\frac{a-1-2b+4+3c-9}{2-6+12}=1\)
\(\Rightarrow\frac{a-1}{2}=1\Rightarrow a-1=2\Rightarrow x=3\)
\(\Rightarrow\frac{b-2}{3}=1\Rightarrow b-2=3\Rightarrow b=5\)
\(\Rightarrow\frac{c-3}{4}=1\Rightarrow c-3=4\Rightarrow c=7\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
\(\frac{2}{9}.3^{a+1}-4.3^a=-90\)
\(\rightarrow\frac{2}{9}.3^a.3-4.3^a=-90\)
\(\rightarrow\frac{2}{3}.3^a-4.3^a=-90\)
\(\rightarrow3^a.\left(\frac{2}{3}-4\right)=-90\)
\(\rightarrow3^a.\left(\frac{-10}{3}\right)=-90\)
\(\rightarrow3^a=-90:\left(\frac{-10}{3}\right)\)
\(\rightarrow3^a=27\)
\(\rightarrow a=3\)
\(\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}\)=> \(\frac{a-1}{2}=\frac{2\left(b-2\right)}{6}=\frac{3\left(c-3\right)}{12}\)
=> \(\frac{a-1}{2}=\frac{2b-4}{6}=\frac{3c-9}{12}\)
Áp dụng tích chất dãy tỉ số = nhau, ta có:
\(\frac{a-1}{2}=\frac{2b-4}{6}=\frac{3c-9}{12}\)=\(\frac{a-1-2b-4+3c-9}{2-6+12}=\)\(\frac{a-2b+3c-\left(1+4+9\right)}{8}=\frac{14-14}{8}=0\)
Vậy : \(\frac{a-1}{2}=0=>a-1=0=>a=1\)
\(\frac{2b-4}{6}=0=>2b-4=0=>b=2\)
\(\frac{3c-9}{12}=0=>3c-9=0=>c=3\)
Vậy..........
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\Rightarrow\frac{a}{1}=\frac{2b}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{1}=\frac{2b}{6}=\frac{a-2b}{1-6}=\frac{14}{-5}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{14}{-5}\\\frac{b}{3}=\frac{14}{-5}\end{cases}}\Rightarrow\hept{\begin{cases}a=-\frac{14}{5}\\b=-\frac{42}{5}\end{cases}}\)