K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

Đáp án A

Ta có: − b 2 a = − 6 2. ( − 3 ) = − 6 − 6 = 1

− Δ 4 a = − ( b 2 − 4 a c ) 4 a = − 6 2 + 4. ( − 3 ) . ( − 1 ) 4. ( − 3 ) = − 36 + 12 − 12 = − 24 − 12 = 2

a) Thay x=1 và y=-2 vào (P), ta được:

\(a\cdot1^2-4\cdot1+c=-2\)

\(\Leftrightarrow a-4+c=-2\)

hay a+c=-2+4=2

Thay x=2 và y=3 vào (P), ta được:

\(a\cdot2^2-4\cdot2+c=3\)

\(\Leftrightarrow4a-8+c=3\)

hay 4a+c=11

Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)

Vậy: (P): \(y=3x^2-4x-1\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

28 tháng 12 2020

a, Có đỉnh \(I\left(-\dfrac{b}{2a};-\dfrac{\Delta}{4a}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\4a+2b+1=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=0\\4a+2b=-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-4\end{matrix}\right.\)

Vậy parabol đó có dạng là \(\left(P\right):y=x^2-4x+1\).

b, 

NV
15 tháng 10 2019

Ta có pt:

\(\left\{{}\begin{matrix}\frac{1}{a}=1\\\frac{4ac-4}{4a}=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\c=-2\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-2\)

23 tháng 6 2018

Đáp án: A (hoành độ đỉnh là x = (-b)/2a = 6; tung độ đỉnh là y = (-Δ)/4a = 19).

4 tháng 12 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}9a+3b=-6\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=-2\\3a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{3}\\b=-1\end{matrix}\right.\\ \Leftrightarrow\left(P\right):y=-\dfrac{1}{3}x^2-x+2\\ b,\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\-\dfrac{b}{2a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\4a-b=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=-1\end{matrix}\right.\Leftrightarrow\left(P\right):y=-\dfrac{1}{4}x^2-x+2\)

16 tháng 11 2023

loading...  loading...  loading...  loading...  

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

26 tháng 7 2019

Đáp án B