Trong mp Oxy, cho đường tròn C : x 2 + y 2 − 2 x + 6 y + 6 = 0 . Ảnh (C’) của (C). qua phép tịnh tiến theo vectơ − 2 ; 3 là
A. ( x + 1 ) 2 + y 2 = 4
B. ( x − 1 ) 2 + y 2 = 16
C. x 2 + ( y − 1 ) 2 = 4
D. x 2 + ( y − 1 ) 2 = 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Đường tròn (C) có tâm O(1;–2). T u → ( O ) = O ' . Áp dụng biểu thức tọa độ ta có: x ' − 1 = − 1 y ' + 2 = 3
<=> x ' = 0 y ' = 1 Đường tròn tâm O’(0;1) bán kính 3
Phương trình đường tròn cần tìm: x 2 + y − 1 2 = 3
Đáp án C
(C) có tâm I(0;2), bán kính 5
Tịnh tiến theo vectơ u → biến I thành I’(2; 0)
=>Phương trình đường tròn (C’): ( x − 2 ) 2 + y 2 = 25
4.
Để phép tịnh tiến theo \(\overrightarrow{v}\) biến d thành chính nó thì \(\overrightarrow{v}\) phải là 1 vecto chỉ phương của d
Khi đó \(\overrightarrow{v}=k\left(1;2\right)\) với k là số thực
5.
Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=4\)
Phép tịnh tiến theo \(\overrightarrow{v}\) biến đường tròn thành đường tròn tâm I' bán kính R=4
\(I'=T_{\overrightarrow{v}}\left(I\right)\Rightarrow\left\{{}\begin{matrix}x_{I'}=2+1=3\\y_{I'}=3+1=4\end{matrix}\right.\) \(\Rightarrow I'\left(3;4\right)\)
Phương trình đường tròn: \(\left(x-3\right)^2+\left(y-4\right)^2=16\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Đáp án A
(C) có I( 1; –3), bán kính R = 2
Áp dụng biểu thức tọa độ x ' = x + a y ' = y + b , ta có I’ (–1;0)=>(C’): ( x + 1 ) 2 + y 2 = 4