K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

n số a1, a2, …, amà mỗi số trong chúng bằng1 hoặc -1 nên \(a_1.a_2;a_2.a_3;...;a_{n-1}.a_n;a_n.a_1\)nhận giá trị 1 hoặc -1.

Mà ta có \(a_1.a_2+a_2.a_3+...+a_{n-1}.a_n+a_n.a_1=0\)nên trong các hạng tử \(a_1.a_2;a_2.a_3;...;a_{n-1}.a_n;a_n.a_1\)sẽ có 1 nửa nhận giá trị 1, nửa còn lại nhận giá trị -1.

Đặt \(n=2k\)

Mặt khác: \(\left(x_1.x_2\right)\left(x_2.x_3\right)...\left(x_n.x_1\right)=\left(x_1\right)^2.\left(x_2\right)^2...\left(x_n\right)^2=1\)

\(\Rightarrow1^k.\left(-1\right)^k=1\Rightarrow\left(-1\right)^k=1\)nên k chẵn

Vậy \(n⋮4\)(đpcm)

3 tháng 1 2017

Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2). 

Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2) 
<=> S = 0 (mod 2) (đpcm).

19 tháng 1 2017

bai nay thi to...bo tay.com.vn