Cho n số a1, a2, …, an biết rằng mỗi số trong chúng bằng1 hoặc -1 và a1. a2 + a2. a3+…+ an-1. an+ an. a1 = 0. Chứng tỏ rằng n chia hết cho 4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
3 tháng 1 2017
Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2).
Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2)
<=> S = 0 (mod 2) (đpcm).
n số a1, a2, …, an mà mỗi số trong chúng bằng1 hoặc -1 nên \(a_1.a_2;a_2.a_3;...;a_{n-1}.a_n;a_n.a_1\)nhận giá trị 1 hoặc -1.
Mà ta có \(a_1.a_2+a_2.a_3+...+a_{n-1}.a_n+a_n.a_1=0\)nên trong các hạng tử \(a_1.a_2;a_2.a_3;...;a_{n-1}.a_n;a_n.a_1\)sẽ có 1 nửa nhận giá trị 1, nửa còn lại nhận giá trị -1.
Đặt \(n=2k\)
Mặt khác: \(\left(x_1.x_2\right)\left(x_2.x_3\right)...\left(x_n.x_1\right)=\left(x_1\right)^2.\left(x_2\right)^2...\left(x_n\right)^2=1\)
\(\Rightarrow1^k.\left(-1\right)^k=1\Rightarrow\left(-1\right)^k=1\)nên k chẵn
Vậy \(n⋮4\)(đpcm)