K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

Ta thấy, hai phân số a b và  a c   có cùng tử số là a, mẫu số b và c khác 0. Do đó, để a b < a c thì b > c

Đáp án cần chọn là: B

17 tháng 11 2021

C

17 tháng 11 2021

C

23 tháng 3 2022

Để \(\dfrac{a}{b}< \dfrac{a}{c}\)

Thì b>c

=> Chọn B

26 tháng 3 2016

ai giúp mik vs

26 tháng 3 2016

giúp mik với mik cần gấp

22 tháng 10 2019

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

=> \(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)

Nhân cả hai vế với \(\frac{1}{b-c}\)

=> \(\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Tương tự: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ba}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

                  \(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Cộng vế với vế ta có:

\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)

\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

Vậy ta có điều phải chứng minh.

20 tháng 4 2018

Ta có:  a x + b = 0 ⇔ x = - b a

 Và c x + d = 0 ⇔ x = - d c  

Theo giả thiết  ta có:  - b a < - d c ⇔ b a > d c

24 tháng 6 2016

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{1}{3}.\) (T/c dãy tỷ số bằng nhau)

=> \(\frac{a}{3b}=\frac{1}{3}\Rightarrow\frac{a}{b}=1\Rightarrow a=b\)

Làm tương tự sẽ rút ra a=b=c=d

NV
4 tháng 1 2021

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}=2\)

\(\Rightarrow P=2+2+2=6\)