Tìm tọa độ giao điểm của đồ thị hàm số y = 9x và đồ thị hàm số y = 1 x ?
A. − 1 3 ; 3 ; 1 3 ; 3
B. 1 3 ; 9 ; 1 3 ; − 9
C. 1 3 ; − 3 ; − 1 3 ; − 3
D. 1 3 ; 3 ; − 1 3 ; − 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để đồ thị hàm số \(y=ax^2\) đi qua điểm A(4;4) thì
Thay x=4 và y=4 vào hàm số \(y=ax^2\), ta được:
\(a\cdot4^2=4\)
\(\Leftrightarrow a\cdot16=4\)
hay \(a=\dfrac{1}{4}\)
a, - Thay tọa độ điểm A vào hàm số ta được : \(4^2.a=4\)
\(\Rightarrow a=\dfrac{1}{4}\)
b, Thay a vào hàm số ta được : \(y=\dfrac{1}{4}x^2\)
- Ta có đồ thì của hai hàm số :
c, - Xét phương trình hoành độ giao điểm :\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy hai hàm số trên cắt nhau tại hai điểm : \(\left(0;0\right);\left(-2;1\right)\)
a) Tọa độ giao điểm của đồ thị hàm số y=-2x+1 với trục Ox là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-2x+1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=-1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của đồ thị hàm số y=-2x+1 với trục Oy là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
\(a,y=\dfrac{1}{4}x^2\)
Cho \(x=1=>y=\dfrac{1}{4}\\ x=2=>y=1\\ x=3=>y=\dfrac{9}{4}\\ x=4=>y=4\\ x=5=>y=\dfrac{25}{4}\)
Vẽ đồ thị đi qua các điểm \(\left(1;\dfrac{1}{4}\right);\left(2;1\right);\left(3;\dfrac{9}{4}\right);\left(4;4\right);\left(2;\dfrac{25}{4}\right)\)
\(y=x-1\)
\(Cho\) \(x=0=>y=-1\) ta được điểm \(\left(0;-1\right)\)
Cho \(y=0=>x=1\) ta được điểm \(\left(1;0\right)\)
Vẽ đồ thị đi qua hai điểm \(\left(0;-1\right);\left(1;0\right)\)
b, Hoành độ giao điểm của hai hàm số là nghiệm của pt
\(\dfrac{1}{4}x^2=x-1\\ < =>\dfrac{1}{4}x^2-x+1=0\\ < =>x=2\)
Thay \(x=2\) vào \(y=x-1\)
\(\Leftrightarrow y=2-1=1\)
Vậy tọa độ giao điểm là \(\left(2;1\right)\)
Lời giải:
a. Bạn có thể tự vẽ
b. PT hoành độ giao điểm: $\frac{1}{4}x^2=x-1$
$\Leftrightarrow x^2=4(x-1)$
$\Leftrightarrow x^2-4x+4=0$
$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$
Với $x=2$ thì $y=x-1=2-1=1$
Vậy tọa độ giao điểm của 2 đths là $(2,1)$
2. PT hoành độ giao điểm: \(3x=x+2\Leftrightarrow2x=2\Leftrightarrow x=1\Leftrightarrow y=3\Leftrightarrow A\left(1;3\right)\)
Vậy \(A\left(1;3\right)\) là giao 2 đths
Lời giải:
a.
Đồ thị xanh lá: $y=2x+1$
Đồ thị xanh dương: $y=x-3$
b.
PT hoành độ giao điểm:
$y=2x+1=x-3$
$\Leftrightarrow x=-4$
$y=x-3=(-4)-3=-7$
Vậy tọa độ điểm $M$ là $(-4;-7)$
b: Tọa độ giao điểm là:
2x-1=x+2 và y=x+2
=>3x=3 và y=x+2
=>x=1 và y=3
a:
\(b,\Leftrightarrow x=3;y=0\Leftrightarrow9-1+a=0\Leftrightarrow a=-8\\ \Leftrightarrow y=3x-1-8=3x-9\\ c,\text{PT hoành độ giao điểm: }3x-3=3x-9\Leftrightarrow0x=-6\Leftrightarrow x\in\varnothing\)
Vậy 2 đt trên không cắt nhau
Hoành độ x của giao điểm phải thỏa mãn điều kiện: