K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

x=9,y=15

31 tháng 10 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{3}=\frac{3x-2y}{3.5-2.3}=\frac{27}{9}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=3\Rightarrow x=15\\\frac{y}{3}=3\Rightarrow y=9\end{cases}}\)

Vậy .... 

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

22 tháng 7 2019

a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) =>  \(\frac{x}{20}=\frac{y}{24}\) 

        \(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)

=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)

=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) =>  \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)

Vậy ...

b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

         \(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)

Vậy ...

22 tháng 7 2019

Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)

Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .

b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha 

Hok tốt

19 tháng 5 2017

\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}\)

\(=\frac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)

=>3x-2y=2z-5x=5y-3z=0

  • 3x-2y=0 => 3x=2y => x/2=y/3
  • 2z-5x=0 => 2z=5x => z/5=x/2

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{50}{10}=5\)

=>x=10;y=15;z=25

11 tháng 12 2024

Wow

19 tháng 7 2017

a, x/3=y/4                                                     b, 2x=5y

=> 2x/6=y/4=2x-4/6-4=2/2=1                     => x/5=y/2 => 3x/15=y/2=3x-y/15-2=22/13

+, x/3=1 => x=3                                  +,2x=22/13 => x=11/13

+, y/4=1 => y=4                                  +,5y=22/13 => y=22/65

Vậy ....                                   Vậy ...........

c, x/y=3/5                                                      d,     x/2=y/5

=> x/3=y/5                                               => 2x/4=y/5 

=>3x/9=2y/10                                            => 2x+y/4+5=18/9=2

 => 3x+2y/9+10=38/19=2                    +,x/2=2 => x=4

+,x/3=2 => x=6                                  +,y/5=2 => y=10

Vậy ...........                                        Vậy ............ 

+,y/5=2 => y=10

28 tháng 9 2016

Ta có: \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)\(\frac{y}{4}=\frac{x}{7}\Rightarrow\frac{x}{35}=\frac{y}{20}\)

=> \(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau. ta có:

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}=\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}=\frac{3x-2y+z}{36-40+35}=\frac{93}{31}=3\)

\(\Rightarrow\begin{cases}\frac{x}{12}=3\\\frac{y}{20}=3\\\frac{z}{35}=3\end{cases}\Rightarrow\begin{cases}x=36\\y=60\\z=105\end{cases}}\)

28 tháng 9 2016

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)(*)

\(\frac{y}{4}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{35}\)(**)

Từ (*) và (**) ta có:

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)

hay \(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}=\frac{3x-2y+z}{36-40+35}=\frac{93}{31}=3\)

\(\Rightarrow\begin{cases}x=3.36:3=36\\y=3.40:2=60\\z=3.35=105\end{cases}\)

Vậy x=36;y=60 và z=105

22 tháng 12 2019

c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(2x^2+2y^2-3z^2=-100\)

đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)

\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)

\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)

\(2x^2+2y^2-3z^2=-100\)

thay\(6k^2+8k^2-15k^2=-100\)

\(k^2\left(6+8-15\right)=-100\)

\(k^2.\left(-1\right)=-100\)

\(k^2=100\)

\(\Rightarrow k=\pm10\)

bạn thế vào nha