Cho tam giác ΔABC đồng dạng ΔEDC như hình vẽ, tỉ số độ dài của x và y là:
A. 3 4
B. 2 3
C. 3 2
D. 4 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC ~ ΔEDC
⇒ A B E D = A C E C ⇔ x y = 3 6 = 1 2
Đáp án: B
a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=25+49=74\)
=>\(BC=\sqrt{74}\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{5}=\dfrac{DC}{7}\)
mà \(DB+DC=BC=\sqrt{74}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{5}=\dfrac{DC}{7}=\dfrac{DB+DC}{5+7}=\dfrac{\sqrt{74}}{12}\)
=>\(DB=\dfrac{\sqrt{74}}{12}\cdot5=\dfrac{5\sqrt{74}}{12}\left(cm\right);DC=\dfrac{7\sqrt{74}}{12}\left(cm\right)\)
b: Xét ΔCAB có ED//AB
nên \(\dfrac{CE}{CA}=\dfrac{CD}{CB}=\dfrac{ED}{AB}\)
=>\(\dfrac{CE}{7}=\dfrac{ED}{5}=\dfrac{7\sqrt{74}}{12}:\sqrt{74}=\dfrac{7}{12}\)
=>\(CE=\dfrac{7}{12}\cdot7=\dfrac{49}{12}\left(cm\right);ED=7\cdot\dfrac{5}{12}=\dfrac{35}{12}\left(cm\right)\)
c: Xét ΔABC vuông tại A và ΔEDC vuông tại E có
\(\widehat{ACB}\) chung
Do đó: ΔABC~ΔEDC
=>\(k=\dfrac{BC}{DC}=\sqrt{74}:\dfrac{7\sqrt{74}}{12}=\dfrac{12}{7}\)
a: BC=35cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{35}{7}=5\)
Do đó:BD=15cm; CD=20cm
b: Xét ΔABC có DE//AB
nên DE/AB=CD/BC
=>DE/21=20/35=4/7
=>DE=12cm
Xét ΔABC cso DE//BC
nên CE/CA=ED/AB
=>CE/28=12/21=4/7
=>CE=12cm
e tự vẽ hình nha
a) vì tg ABC vg tại A(gt)
\(\Rightarrow AB^2+AC^2=BC^2\left(pytago\right)\\ \Leftrightarrow28^2+21^2=BC^2\\ \Leftrightarrow BC=35\left(cm\right)\)
có AD là pgiac(gt)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{21}{28}\\ \Leftrightarrow\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}\)
\(+\dfrac{BD}{21}=\dfrac{35}{49}\Rightarrow BD=15\left(cm\right)\\ +\dfrac{CD}{28}=\dfrac{35}{49}\Rightarrow CD=20\left(cm\right)\)
b) xét tgiac ABC và tgac EDC có:
+ góc C chung
+ góc E = góc A (=90 độ)
+ góc D = góc B ( sltrong, DE//AB vì cùng vg góc AC)
\(\Rightarrow\Delta ABC\sim\Delta EDC\left(ggg\right)\\ \Rightarrow\dfrac{CB}{CD}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)
\(\Leftrightarrow\dfrac{35}{20}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)
\(+ED=\dfrac{20.21}{35}=12\left(cm\right)\\ +EC=\dfrac{28.20}{35}=16\left(cm\right)\)
c) ở trên câu b a làm có luôn tam giác với tỉ số r đấy e chép xuống
Bài 2 :
vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :
AEEB=ECBCAEEB=ECBC
⇒⇒ CE=AB.BCABCE=AB.BCAB
⇒⇒ CE=AE.23CE=AE.23
⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2
⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC
⇒⇒ CE=2AC=6(cm)
Bài 1: Giải
Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)
k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23
Chu vi của tam giác 1 là:
12+16+18=46(m)12+16+18=46(m)
⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)
Cạnh thứ hai của tam giác đồng dạng (2) là:
16:23=24(m)16:23=24(m)
Cạnh lớn nhất của tam giác đồng dạng (2) đó là:
69−24−18=27(m
Bài 3 tớ k bt lm
Sửa đề: ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)
Vì ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)
mà ΔA'B'C' \(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_2=\dfrac{3}{4}\)
nên ΔABC\(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_1\cdot k_2=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
hay ΔA"B"C"\(\sim\)ΔABC theo tỉ số đồng dạng k=2
Dễ:C
Vì a:b:c=2:3:4
=> Đặt a=2t, b=3t, c=4t
Gọi diện tích tam giác đó là S.
Ta có: \(S=\dfrac{a.x}{2}=\dfrac{b.y}{2}=\dfrac{c.z}{2}\)
<=> \(2S=ax=by=cz\)
<=>2t.x=3t.y=4t.z
<=>2x=3y=4z
<=>\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Vậy..
Ta có: ΔABC ~ ΔEDC
A B E D = A C E C ⇔ x y = 4 6 = 2 3
Đáp án: B