Cho đoạn AC vuông góc với CE. Nối A với trung điểm D của CE và E với trung điểm B của AC, AD và EB cắt nhau tại F. Cho BC = CD = 15cm. Tính diện tích tam giác DEF theo đơn vị c m 2 ?
A. 50
B. 50 2
C. 75
D. 15 2 105
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S ADB =S DCB.ADB có chung đáy DB với DCB nên chiều cao hạ từ A = chiều cao hạ từ C. S AFB = S FCB VÌ CÓ chung đáy FB và chiều cao hạ từ A = chiều cao hạ từ C. S FEB = 2/3 S FCB = 2/3 S AFB VÌ BE = 2/3 BC VÀ S FCB = S AFB.AFB có chung chiều cao hạ từ B với FEB nên đáy FE = 2/3 AF.S FCD = S ADF = 6 CM2 vì AD =DC VÀ chung chiều cao hạ từ F.S AFC = S FCD + S ADF = 6CM2+6CM2 = 12 CM2.S FCE =2/3 S AFC = 12 X 2/3 =8 (CM2) VÌ CHÚNG CHUNG CHIỀU CAO HẠ TỪ C VÀ FE =2/3 AF.S CDFE = S DFC + S FCE = 6 + 8 = 14 CM2
ĐÁP SỐ : 14 cm2
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot25=15\cdot20\)
\(\Leftrightarrow AH\cdot25=300\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Vậy: BC=20cm; AH=12cm; HC=16cm
a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)
góc AEC = góc ADB= 90 do ...
góc A chung
=> tam giác AEC = tam giác ADB (ch - gn)
a.
Xét \(\Delta AEC\) và \(\Delta ADB\) có:AB=AC(cạnh tam giác cân);\(\widehat{AEC}=\widehat{ADB}=90^0\);\(\widehat{A}\) chung
\(\Rightarrow\Delta AEC=\Delta ADB\left(c.g.c\right)\)
b.
Do trung tuyến CD và BM cắt nhau tại I nên I là trọng tâm.
\(\Rightarrow CI=\frac{2}{3}CD\)
Áp dụng định lý py-ta-go vào tam giác vuông BDC ta có:
\(BC^2=BD^2+DC^2\)
\(\Rightarrow CD^2=BC^2-BD^2\)
\(\Rightarrow CD^2=100-64\)
\(\Rightarrow CD=6\) vì \(CD>0\)
\(\Rightarrow CI=\frac{2}{3}\cdot6=4\)
c
Xét \(\Delta BEC\) và \(\Delta BDC\) có:\(\widehat{BEC}=\widehat{BDC}=90^0\);BC chung;\(\widehat{EBC}=\widehat{DCB}\)
\(\Rightarrow\Delta BEC=\Delta BDC\left(c.g.c\right)\Rightarrow BE=DC\Rightarrow AE=AD\)
Xét \(\Delta HAE\) và \(\Delta HAD\) có:\(\widehat{AEH}=\widehat{ADH}=90^0;AH\)chung;\(AE=AD\)
\(\Rightarrow\Delta HAE=\Delta HAD\left(c.g.c\right)\Rightarrow AH\) là đường phân giác.
Mặt khác tam giác ABC cân nên AH đồng thời là đường cao (nếu bạn chưa học cái này thì có thể CM vuông góc bằng cách tạo giao điểm giữa AH và BC)
Xét ΔEAC có AD, EB là 2 đường trung tuyến.
Suy ra F là giao của 2 đường trung tuyến AD, EB nên F là trọng tâm của tam giác ABC.
E F E B = A F A D = 2 3
Kẻ FH vuông góc với CE (H thuộc CE).
Xét 2 tam giác vuông EFH và EBC ta có: B E C ^ chung
=> ΔEFH ~ ΔEBC (g - g)
⇒ E F E B = F H B C = 2 3 ⇒ F H 15 = 2 3 ⇒ F H = 2.15 3 = 10 c m
Vì D là trung điểm của CE nên CD = DE = 15cm.
Vậy diện tích của tam giác DEF là: S D E F = 1 2 . F H . D E = 1 2 . 10 . 15 = 75 c m 2
Đáp án: C