Cho tam giác ABC có AB = 12, AC = 15 và B ^ = 60 0 . Tính BC
A. BC = 3 3 + 6
B. BC = 3 13 + 6
C. BC = 9
D. BC = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AC2 = AB2 + BC2 - 2.AB.BC.cos(60)
⇒ AC2 = 27
⇒ AC = 3\(\sqrt{3}\)
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)
⇒ \(\dfrac{3}{sinC}=\dfrac{6}{sinA}=\dfrac{3\sqrt{3}}{sin60}\)
⇒ \(\left\{{}\begin{matrix}sinA=1\\sinC=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\widehat{A}=90^0;\widehat{C}=30^0\)
a: CH=16^2/25=10,24cm
BC=25+10,24=35,24cm
AB=căn 16^2+25^2=căn 881(cm)
b: AH=căn 12^2-6^2=6căn 3cm
CH=AH^2/HB=108/6=18cm
BC=6+18=24cm
c: BC=căn 5^2+25^2=5 căn 26cm
BH=5^2/5căn 26=5/căn 26(cm)
CH=5căn 26-5/căn 26=24,51(cm)
d: AB=căn 16^2-14^2=2căn15(cm)
e: AB=căn 2*8=4cm
AC=căn 6*8=4căn 3(cm)
a: AD là phân giác
=>BD/AB=CD/AC
=>BD/6=3/9=1/3
=>BD=2cm
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)
\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{9^2+12^2-2.9.12.cos60^0}=3\sqrt{13}\)
Kẻ đường cao AH
Xét tam giác vuông ABH, ta có:
Áp dụng định lý Py-ta-go vào tam giác vuông AHC ta có:
Đáp án cần chọn là: B