CMR với mọi số nguyên n thì \(n^3+5n⋮6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
\(\left(5n-1\right)\left(n+3\right)-9n+3=5n^2+15n-n-3-9n+3=5n^2+5n=5n\left(n+1\right)⋮5\)
Mà n(n+1) là tích 2 số nguyên liên tiếp => \(n\left(n+1\right)⋮2\)
\(\Rightarrow5n\left(n+1\right)⋮5.2=10\) (đpcm)
\(\left(5n-1\right)\left(n+3\right)-9n+3\)
\(=5n^2+15n-n-3-9n+3\)
\(=5n^2+5n=5n\left(n+1\right)⋮5\)
Lại có \(n\left(n+1\right)⋮2\)
\(\Rightarrow5n^2+5n⋮\left(2.5\right)=10\)
\(\RightarrowĐPCM\)
Gọi d là ƯCLN của 7n + 10 và 5n + 7.
Khi đó ta có 7n + 10 chia hết d và 5n + 5 chia hết d. Vậy thì 5( 7n +10) - 7( 5n+7) = 1 chia hết d. Vậy d = 1 hay 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau.
giả sử (7n+10, 5n+7)=d
suy ra 7n+10chia hết d, 5n+7 chia hết d
suy ra 35n+50 chia hết d; 35n+7 chia hết d
suy ra 35n+50 - 35n-7 chia hết d
suy ra 1 chia hết d
suy ra d=1
vậy UWCCLN (7n+10; 5n+7)=1
suy ra 7n+10;5n+7 là SNT cùng nhau
a, Khai trển phương trình :
(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4
= 25n^2 + 20n = 5n(5n + 4)
--> (52+2)^2 - 4 = 5n(5n + 4) hiển nhiên chia hết cho 5.
lưu ý : (a+b)^2 = a^2 + 2ab + b^2
Vì số n là số nguyên dương\(\Rightarrow\) n=2k hoacn=2k+1 (k\(\in\)N*)
Với n=2k \(\Rightarrow\) (5n+15)(n+6)=(10k+15)(2k+6)
=10x2k2+10x6k+30k+80
=10x2k2+10x6k+10x3k+10x8
=10(2k2+6k+3k+8) chia hết cho 10
Với n=2k+1 \(\Rightarrow\) (5n+15)(n+6)=[10(k+1)+15](2k+1+6)
=(10k+10+15)(2k+7)
=10x2kk+10x7k+10x2k+10x7+30k+105
=10(2kk+7k+2k+7+2k)+105
Vì 10(2kk+7k+2k+7+2k) chia hết cho 10 mà 2x105 chia hết cho 10
 \(\Rightarrow\) 105 chia hết cho 10
Vậy n là số nguyên dương thì (5n+15)(n+6) chia hết cho 10
Gọi ƯCLN(7n+4;5n+3)=d (d thuộc N*)
(chú ý :chc nghĩa là chia hết cho)
=>7n+4 chc d =>5(7n+4) chc d=>35n+20 chc d
=>5n+3 chc d =>7(5n+3) chc d=>35n+21 chc d
=>35n+21-35n-20 chc d
=> 1 chc d
vì d thuộc N =>d=1
=>ƯCLN(7n+4;5n+3)=1 (với mọi n)
Vậy phân số 7n+4/5n+3 là phân số tối giản với mọi n
Gọi d là ƯC ( 7n + 10 ; 5n + 7 )
=> 7n + 10 ⋮ d => 5.( 7n + 10 ) ⋮ d => 35n + 50 ⋮ d
=> 5n + 7 ⋮ d => 7.( 5n + 7 ) ⋮ d => 35n + 49 ⋮ d
=> [ ( 35n + 50 ) - ( 35n + 49 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 7n + 10 ; 5n + 7 ) = 1 nên 7n + 10 và 5n + 7 là nguyên tố cùng nhau
Câu b làm tương tự
Ta có n3 + 5n
= n3 - n + 6n
= n(n2 - 1) + 6n
= (n - 1)n(n + 1) + 6n
Vì (n - 1)n(n + 1) là tích 3 số nguyên liên tiếp
=> (n - 1)n(n + 1) \(⋮\)6
mà 6n \(⋮\)6
=> (n - 1)n(n + 1) + 6n \(⋮\)6
=> n3 + 5n \(⋮6\forall n\inℤ\)