Giai pt 2x + \(\sqrt{x+\sqrt{x-\frac{1}{4}}}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện: \(-2\le x\le2\)
pt\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{6x-4}{\sqrt{x^2+4}}\)
\(\Leftrightarrow6x-4=0\Leftrightarrow x=\frac{2}{3}\)(t/m)
a/ Dặt \(\sqrt{x+1}=a\ge0\)
\(\Rightarrow4\sqrt{x+1}=x^2+5x+4\)
\(\Leftrightarrow4\sqrt{x+1}=\left(x+1\right)^2+3\left(x+1\right)\)
\(\Leftrightarrow4a=a^4+3a^2\)
\(\Leftrightarrow a\left(a-1\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
b/ Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)
\(\Rightarrow a^2-b^2=x+3\)
Từ đây ta có:
\(a-b=\frac{a^2-b^2}{5}\)
\(\Leftrightarrow\left(a-b\right)\left(5-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)
Thế vô làm tiếp
\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\left(-4\le x\le4\right)\)
Dễ thấy x=0 là nghiệm của phương trình (1)
Xét x\(\ne\)0.Nhân cả 2 vế của (1) với \(\left(\sqrt{4+x}+2\right)\) được
\(x\left(\sqrt{4-x}+2\right)=-2x\left(\sqrt{4+x}+2\right)\)
\(\Rightarrow\sqrt{4-x}+2=-2\left(\sqrt{4+x}+2\right)\)
\(\Rightarrow\sqrt{4-x}=-2\sqrt{4+x}-6\)
\(\Rightarrow\sqrt{4-x}< 0\)(vô nghiệm)
Vậy nghiệm của phương trình (1) là x=0
-Chúc bạn học tốt-
Bài giải:
Điều kiện:\(\left\{{}\begin{matrix}x+4\ge0\\4-x\ge0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x\ge-4\\x\le4\end{matrix}\right.\)⇔\(-4\le x\le4\)
Pt: \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)
⇔\(\dfrac{x+4-4}{\sqrt{x+4}+2}\left(\sqrt{4-x}+2\right)=-2x\)
⇔\(\dfrac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}+2x=0\)
⇔\(x\left(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2\right)=0\)
⇔\(x=0\left(tm\right)\)
Vì \(\sqrt{4-x}+2>0\) và \(\sqrt{x+4}+2>0\) với mọi x
Nên \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}>0\) ⇒ \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2>0\)
Vậy pt có nghiệm duy nhất là \(x=0\)
ĐK : \(2\le x\le4\)
pt <=> \(\sqrt{x-2}+\sqrt{4-x}-\left(2x^2-5x+1\right)=0\)
\(\Leftrightarrow\sqrt{x-2}-1+\sqrt{4-x}-1-\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}-\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-\left(2x+1\right)\right]=0\)
TH1 : x - 3 = 0 <=> x = 3 ( tmđk )
TH2 : \(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-\left(2x+1\right)=0\)( tự xử lý nhe == , vô nghiệm á )
Vậy pt có nghiệm duy nhất là x = 3
a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Làm nốt
ĐKXĐ: ...
Đặt \(\sqrt{x+\frac{3}{4}}=a\ge0\Rightarrow x=a^2-\frac{3}{4}\)
\(\sqrt{a^2-\frac{3}{4}+1+a}+a^2-\frac{3}{4}=-\frac{1}{4}\)
\(\Leftrightarrow\sqrt{a^2+a+\frac{1}{4}}+a^2-\frac{1}{2}=0\)
\(\Leftrightarrow\sqrt{\left(a+\frac{1}{2}\right)^2}+a^2-\frac{1}{2}=0\)
\(\Leftrightarrow a^2+a=0\Rightarrow\left[{}\begin{matrix}a=0\\a=-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=-\frac{3}{4}\)
\(pt\Leftrightarrow2x+\sqrt{\left(\sqrt{x-\frac{1}{4}+\frac{1}{2}}\right)^2}=2\)
đk: \(x\ge\frac{1}{4}\)
\(\Leftrightarrow2x+\left(\sqrt{x-\frac{1}{4}}+\frac{1}{2}\right)=2\Leftrightarrow\sqrt{x-\frac{1}{4}}=\frac{3}{2}-2x\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3}{2}-2x\ge0\\x-\frac{1}{4}=\left(\frac{3}{2}-2x\right)\end{cases}^2\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{4}\\x-\frac{1}{4}=\frac{9}{4}-6x+4x^2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{4}\\x=\frac{1}{2}\\x=\frac{5}{4}\left(loại\right)\end{cases}}\)
Vậy S={1/2}