Cho khối cầu (S) tâm O, bán kính R ngoại tiếp khối lập phương (P) và nội tiếp khối trụ (T). Gọi V 1 , V 2 lần lượt là thể tích của khối lập phương (P) và khối trụ (T). Tính giá trị gần đúng của tỉ số V 1 V 2
A. 0,23
B. 0,24
C. 0,25
D. 0,26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Bán kính hình cầu là R = r
Ta có V C V T = 4 3 π r 3 π r 2 .2 r = 2 3
Chọn đáp án C.
Ta có: Vì mặt cầu tiếp xúc với 2 đường tròn của hình trụ.
Nên bán kính mặt cầu bằng O O ' 2 = r
Thể tích của khối cầu là
Thể tích của khối trụ là
Khi đó V C V T = 2 3
Đáp án C
Gọi cạnh của hình lập phương bằng a
(R là bán kính đường tròn ngoại tiếp hình vuông ABCD)
Thể tích
(r là bán kính đường tròn nội tiếp hình vuông ABCD)
Để ý rằng đường chéo của hình lập phương chính là đường kính của khối cầu. Mặt khác ta lại có công thức: “Bình phương độ dài đường chéo của hình lập phương bằng ba lần bình phương của độ dài cạnh hình lập phương”. Khi đó 2 R 2 = 3 a 2 ⇒ a = 2 R 3 3
Suy ra V 1 = 2 3 3 R 3 = 8 3 9 R 3 .
Vì khối cầu có bán kính R nên ta có thể tính được bán kính và chiều cao của khối trụ ngoại tiếp ngoài khối cầu lần lượt là R và 2R.
Do đó V 2 = πR 2 . 2 = 2 πR 3
Vậy ta có tỉ số V 1 V 2 = 8 3 9 R 3 2 πR 3 = 4 3 9 π ≈ 0 , 245
Đáp án C