Cho hình thang cân ABCD (AB // CD, AB < CD).
Gọi E, F lần lượt là trung điểm của AD, BC. Vẽ AH
vuông góc với CD tại H
a) Chứng minh ADC = EHD, từ đó chứng minh EH //
FC.
b) Chứng minh tứ giác EHCF là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)
=> FK là đường trung bình của tam giác ACD
=> FK//AD
=> ADKF là hình thang
Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD
=> ME // AD mà FK//AD (cmt)
=> ME//FK (1)
Chứng minh tương tự ta cũng có:
MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC
=> MF//BC ; EK // BC
=> MF//EK (2)
Từ (1) và (2) ta có: EMFK là hình bình hành
a: Xét ΔABD có
E là trung điểm của AB
F là trung điểm của AD
Do đó: EF là đường trung bình
=>EF//DB
hay EFDB là hình thang
mà \(\widehat{FDB}=\widehat{EBD}\)
nên EFDB là hình thang cân
b: Ta có: ΔAEF cân tại A
mà AI là đường trung tuyến
nên AI là phân giác của góc EAF
hay AI là phân giác của góc PAQ
Xét tứ giác APIQ có
\(\widehat{API}=\widehat{AQI}=\widehat{QAP}=90^0\)
Do đó: APIQ là hình chữ nhật
mà AI là tia phân giác của góc PAQ
nên APIQ là hình vuông
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔABC
Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
H là trung điểm của AD
G là trung điểm của CD
Do đó: HG là đường trung bình của ΔADC
Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)
Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: \(HE=\dfrac{BD}{2}\)
mà AC=BD
nên HE=EF
Xét tứ giác EFGH có
EF//HG
EF=HG
Do đó: EFGH là hình bình hành
mà HE=EF
nên EFGH là hình thoi
a: Ta có: ΔAHD vuông tại D
mà HE là đường trung tuyến ứng với cạnh huyền AD
nên HE=ED
Xét ΔEHD có EH=ED
nên ΔEHD cân tại E
Suy ra: \(\widehat{ADC}=\widehat{EHD}\)