K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Đáp án B

*Xếp 12 khách vào 3 toa tàu (có thể có toa không có khách): Có 3 12 cách.

* Trừ đi các trường hợp có KHÔNG QUÁ 2 toa có khách:  − C 3 2 .2 12

(Chọn ra hai toa có C 3 2  cách. Sau đó xếp tùy ý 12 khách vào 2 toa đã chọn ra này, tức là có thể có một trong hai toa không có khách).

Nhưng như vậy ta đã trừ đi các trường hợp chỉ có 1 toa có khách đến 2 lần nên phải cộng lại số này:  + C 3 1 .1 12

* Vậy cách xếp thỏa mãn yêu cầu bài toán là 3 12 − C 3 2 .2 12 + C 3 1 .1 12 = 519156  cách.

Do đó chọn đáp án B.

Bài toán tổng quát: Có bao nhiêu cahcs xếp q hành khách vào n toa tàu khác nhau sao cho toa tàu nào cũng có khách? (hay chính là bài toán chia quà: Có bao nhiêu cách chia q món quà khác nhau cho n bạn sao cho bạn nào cũng có quà?)

Ở bài toán trên, ta có:

3 12 − C 3 2 .2 12 + C 3 1 .1 12 = C 3 0 3 − 0 12 − C 3 1 3 − 1 12 + C 3 2 3 − 2 12 − C 3 3 3 − 3 12

Lập luận tương tự như bài toán trên ta có số cách xếp (cách chia) là:

C n 0 n − 0 q − C n 1 n − 1 q + C n 2 n − 2 q − C n 3 n − 3 q + ... = ∑ k = 0 n − 1 k C n k n − k q  

Bài toán này khác với bài toán chia kẹo Euler: Có bao nhiêu cách chia q chiếc kẹo giống nhau cho n em bé sao cho em nào cũng có kẹo?

11 tháng 4 2019

Đáp án B

*Xếp 12 khách vào 3 toa tàu (có thể có toa không có khách): Có  3 12   cách.

* Trừ đi các trường hợp có KHÔNG QUÁ 2 toa có khách: − C 3 2 .2 12

(Chọn ra hai toa có C 3 2  cách. Sau đó xếp tùy ý 12 khách vào 2 toa đã chọn ra này, tức là có thể có một trong hai toa không có khách).

Nhưng như vậy ta đã trừ đi các trường hợp chỉ có 1 toa có khách đến 2 lần nên phải cộng lại số này: + C 3 1 .1 12

* Vậy cách xếp thỏa mãn yêu cầu bài toán là 3 12 − C 3 2 .2 12 + C 3 1 .1 12 = 519156  cách.

Do đó chọn đáp án B.

Chọn B

NV
19 tháng 3 2023

Không gian mẫu: mỗi khách có 12 cách chọn toa nên 7 khách có \(12^7\) cách lên tàu

Chọn 3 tỏa từ 12 toa: có \(C_{12}^3\) cách

- Xếp 7 khách vào 3 toa theo cách bất kì: mỗi khách có 3 cách chọn toa nên có \(3^7\) cách

- Chọn 2 toa từ 3 toa có \(C_3^2\) cách, xếp 7 khách vào 2 toa này có \(2^7\) cách \(\Rightarrow C_3^2.2^7\) cách xếp 7 khách vào không nhiều hơn 2 toa

- Chọn 1 toa có 3 cách, xếp 7 khách vào toa này có \(1^7=1\) cách \(\Rightarrow3\) cách xếp 7 khách vào 1 toa

\(\Rightarrow C_{12}^3\left(3^7-C_3^2.2^7+3\right)\) cách xếp 3 toa đều có khách

Xác suất: \(P=\dfrac{C_{12}^3\left(3^7-C_3^2.2^7+3\right)}{12^7}=0,011\)

10 tháng 10 2017

Mỗi hành khách có 4 cách chọn 1 toa để lên tàu nên số cách 4 hành khách chọn toa để lên tàu là 4 4 = 256 cách. Suy ra  n Ω = 256

Gọi A là biến cố: “một toa có 3 hành khách; một toa có 1 hành khách và hai toa không có hành khách”.

Chon 3 hành khách từ 4 hành khách và xếp 3 hành khách vừa chọn lên 1 trong 4 toa tàu có C 5 3 . 4 = 16 cách

Xếp hành khách còn lại lên 1 trong 3 toa tàu còn lại có 3 cách

Suy ra n(A) = 16 . 3 = 48

Vậy xác suất của biến cố cần tìm là P A = 48 256 = 3 16

Đáp án B

16 tháng 10 2019

Đáp án B

Mỗi hành khách có 4 cách chọn 1 toa để lên tàu nên số cách 4 hành khách chọn toa để lên tàu là cách. Suy ra

Gọi A là biến cố: “một toa có 3 hành khách; một toa có 1 hành khách và hai toa không có hành khách”.

Chon 3 hành khách từ 4 hành khách và xếp 3 hành khách vừa chọn lên 1 trong 4 toa tàu có cách

Xếp hành khách còn lại lên 1 trong 3 toa tàu còn lại có 3 cách

Suy ra

 

Vậy xác suất của biến cố cần tìm là

NV
12 tháng 12 2021

Mỗi hành khách có 3 lựa chọn \(\Rightarrow n\left(\Omega\right)=3^{12}\)

Chọn 4 người lên toa 1: \(C_{12}^4\) cách

Còn lại 8 người lên 2 toa còn lại, có \(2^8\) cách

Xác suất: \(\dfrac{C_{12}^4.2^8}{3^{12}}=...\)