Cho tam giác ABC , đường cao AH . Biết AB = 15cm , AC = 41cm , HB = 12cm.Tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Đặt AH = x (x > 0)
Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có: AC2 = AB.AH
hay 152 = (x + 16)x ⇔ x2 + 16x -225 = 0
Giải phương trình, ta được x1 = 9 (thỏa mãn); x2 = -25 (loại)
Vậy AH = 9 (cm)
Ta có: HC2 = AH. HB = 9. 16 = 144
⇒ HC = 12 (cm)
Vậy diện tích tam gaics ABC là:
Xét \(\Delta ABH\left(\widehat{AHB}=90^o\right)\) có:
\(AB^2=AH^2+BH^2\) ( theo định lí Py-ta-go)
\(15^2=AH^2+12^2\)
\(\Rightarrow AH^2=81\Rightarrow AH=9\left(cm\right)\)
Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:
\(AC^2=AH^2+HC^2\) (theo định lí Py-ta-go)
\(41^2=9^2+HC^2\)
\(\Rightarrow HC^2=1600\Rightarrow HC=40\left(cm\right)\)
Ta có:\(BC=CH+HB=40+12=52\left(cm\right)\)
\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.9.52=234\left(cm^2\right)\)
Áp dụng Pitago có
\(AH^2=AB^2-HB^2\Leftrightarrow AH=\sqrt{15^2-12^2}=9\)
Lại có \(HC^2=AC^2-AH^2\Leftrightarrow HC=\sqrt{41^2-9^2}=40\)
Có BC=HB+HC=12+40=52
Có BC,AH tính S easy
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Xét tam giác ABH ta có : \(AB^2=BH^2+AH^2\Rightarrow15^2=12^2+AH^2\)
\(AH^2=AB^2-BH^2=15^2-12^2=81\Rightarrow AH=9\)cm
Xét tam giác ACH ta có : \(AC^2=AH^2+HC^2\Rightarrow AC^2=AH^2+HC^2\)
\(HC^2=AC^2-AH^2=41^2-9^2=1600\Rightarrow HC=40\)cm
Ta có : \(BC=CH+HB=40+12=52\)cm
\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.9.52=234\)cm2