K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2020

Bài làm

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=\frac{\left(a+\frac{1}{b}\right)^2}{1}+\frac{\left(b+\frac{1}{a}\right)^2}{1}\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{1+1}=\frac{\left(1+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)

Tiếp tục áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{1}=4\)

=> \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(1+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

=> \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\)( đpcm )

Đẳng thức xảy ra <=> a = b = 1/2

26 tháng 8 2017

Bđt thức phụ : \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2=a^2+2ab+b^2\Leftrightarrow a^2-2ab+b^2=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được :

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\frac{\left(a+\frac{1}{a}+b+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)(đpcm)

15 tháng 3 2020

hack brain ????

5 tháng 1 2018

sửa đề là chứng minh nó <=1 nha !

ta có \(\frac{2}{\left(a+1\right)^2+b^2+1}=\frac{2}{a^2+b^2+2a+2}\)

mà \(a^2+b^2\ge2ab\Rightarrow\frac{2}{a^2+b^2+2a+2}\le\frac{2}{2ab+2a+2}=\frac{1}{ab+a+1}\)

tương rự, ta có \(...\le\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

mà từ abc=1, ta có thể chứng minh \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\)

=>...<=1(ĐPCM)

dấu = xảy ra <=>a=b=c=1

^_^

25 tháng 12 2017

gia thiet la = chu nhi, sao lai +.neu la bag thi ban nhan cheo roi phan h thanh nhan tu.(a+b)(c+b)(c+a)=0 thay vao la ra 

17 tháng 8 2019

Để bài toán trông quen thuộc hơn:

Đặt a =x; \(\frac{1}{b}=y\) thì bài toán trở thành:

Cho x, y > 0 thỏa mãn x + y =1. CMR: \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{25}{2}\).

-------------------------------------------------------------------------

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2=\frac{25}{2}^{\left(đpcm\right)}\)

P/s: Is it true?

18 tháng 8 2019

Xí, hôm qua buồn ngủ quá làm thiếu:V

\(VT\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)(đpcm)

28 tháng 9 2017

moi nguoi oi hom truoc minh hoc tap hop cac so TN do thi co cua minh day nhu sau 

vd: A={xeN/3<x<9}

thi minh liet ke ra la A=4,5,6,7,8 nhung sua bai lai ko dung 

co sua nhu vay A=3,4,5,6,7,8

ko biet hay sai mong ae giup minh

30 tháng 9 2017

Áp dụng BĐT Cô-si \(ab\le\frac{\left(a+b\right)}{4}^2\)

=> \(\left(2a+b\right)\left(2c+b\right)\le\frac{4\left(a+b+c\right)^2}{4}=\left(a+b+c\right)^2\)

=> \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}\ge\frac{1}{\left(a+b+c\right)^2}\)

Mấy cái kia làm tương tự cậu nhé 

Dấu "=" xảy ra khi và chỉ khi a=b=c=1

20 tháng 6 2020

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)

<=> \(\left(1+b\right)^2\left(1+c\right)^2+\left(1+a\right)^2\left(1+b\right)^2+\left(1+a\right)\left(1+c\right)^2\)

\(+2\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2\)

<=> \(a^2+b^2+c^2\ge3\)đúng vì \(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

30 tháng 4 2015

bạn xem bài này tại đây: 

http://d.violet.vn/uploads/resources/615/2779702/preview.swf