cho tam giác ABC vuông tại A, có AB AC. gọi H là trung điểm của cạnh BC .a chứng minh tam giác ABH tam giác AHC .b Chứng minh AH vuông góc với BC.c trên tia đối của tia AH lấy điểm E sao cho AE BC. trên tia đối của tia CA lấy F sao cho CF AB . tính số đo góc EBF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AH chung
AB=AC
HB=HC
Do đó: ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a)Xét 2tam giác AHB và tam giác AHC có:
AB=AC(gt)
BH=HC(vì H là trung điểm của BC)
AH là cạnh chung
=>tam giác AHB=tam giác AHC(c.c.c)
b)Vì tam giác AHB=tam giác AHC(cmt)
=>góc BHA=góc AHC(2 góc tương ứng)
mà góc BHA+góc AHC=180o(kề bù)
=>góc BHA+góc AHC=180o/2=90o
Vậy AH vuông góc với BC
a: Sửa đề: AC=12cm
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
b:
Ta có: AB và AE là hai tia đối nhau
=>A nằm giữa B và E
mà AB=AE
nên A là trung điểm của BE
Xét ΔCBE có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBE cân tại C
c: Ta có: ΔCBE cân tại C
mà CA là đường cao
nên CA là phân giác của góc ECB
Xét ΔCIA vuông tại I và ΔCHA vuông tại H có
CA chung
\(\widehat{ICA}=\widehat{HCA}\)
Do đó: ΔCIA=ΔCHA
d: Ta có: ΔCIA=ΔCHA
=>CI=CH
Xét ΔCEB có \(\dfrac{CI}{CE}=\dfrac{CH}{CB}\)
nên HI//EB
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC