cho 2 đường tròn (O) , (O') ở ngoài nhau . đường nối tâm OO' cắt đường tròn (O) , (O') tại các điểm A,B,C,D theo thứ tự trên đường thẳng . kẻ tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: góc BDC=1/2*góc BOC=60 độ
BD//AC
=>góc DCx=góc BDC=60 độ(so le trong)
=>góc ODC=góc OCD=90-60=30 độ
góc BDO=góc CDO=30 độ
=>góc BOD=góc COD=120 độ
=>ΔBOD=ΔCOD
=>BD=CD
=>D nằm trên trung trực của BC
=>A,O,D thẳng hàng
a. b.
c. - Đường tròn (O’; 1cm) có đường kính là: EF; Các dây cung là: EA, EB, AB, FA, FB
Vì E thuộc (O’; 1cm) nên EO’=1cm; EF=2.EO’=2cm
- Đường tròn (O; 1,5cm) có đường kính là: DC; Các dây cung là: DA, DB, AB, AC, CB
Vì C thuộc (O; 1,5cm) nên CO=1,5cm; DC=2.CO=3cm
d. Vì đường tròn (O’; 1cm) cắt đoạn thẳng OO’ tại E, nên E nằm giữa 2 điểm O và O’.
Ta có: O E + E O ' = O O ' ⇒ O E = 1 c m
Mà EO’=1cm, nên OE=EO’ (=1cm)
Do đó: E là trung điểm của đợn thẳng OO’.
e. Vì đường tròn (O; 1cm) cắt đường thẳng OO’ tại D, đường tròn (O’; 1cm) cắt đường thẳng OO’ tại F, nên 4 điểm D, O, O’, F lần lượt theo thứ tự đó và DO=1,5cm; O’F=1cm.
Ta có: D F = D O + O O ' + O ' F = 1 , 5 + 2 + 1 = 4 , 5 c m .
Vậy DF=4,5cm
Cho 2 đường tròn O và O(1) ở ngoài nhau. Đường nối tâm OO(1) cắt đường tròn taamO và đường tròn tâm O(1) tại các điểm A B C D theo thứ tự trên đường thẳng. Kẻ tiếp tuyến chung ngoài EF ( E thuộc dt tâm O, F thuộc dt tâm O(1). Gọi M là giao điểm của AE và DM, N là giao điểm của EB và FC. Chứng minh rằng:
- Tứ giác MENF là hình chữ nhật
- MN vuông góc với AD
- ME.MA=MF.MD