K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Ta có \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{a+b}\right)\)

Khi đó \(P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\)

\(MaxP=\frac{3}{2}\)khi a=b=c=1/3

15 tháng 5 2018

Ta có: \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\) 

\(P=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\frac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\frac{ca}{\sqrt{ca+\left(a+b+c\right)b}}\) 

\(P=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\frac{ca}{\sqrt{\left(c+b\right)\left(a+b\right)}}\) 

\(P=\sqrt{\frac{ab}{\left(a+c\right)}.\frac{ab}{\left(b+c\right)}}+\sqrt{\frac{bc}{b+a}.\frac{bc}{c+a}}+\sqrt{\frac{ca}{c+b}.\frac{ca}{a+b}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{ca}{c+b}+\frac{ca}{a+b}\right)=\frac{\left(a+b+c\right)}{2}=1\)

Vậy Max P=1 khi \(a=b=c=\frac{2}{3}\)

15 tháng 5 2018

\(P=\Sigma\dfrac{ab}{\sqrt{ab+2c}}=\Sigma\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\Sigma\dfrac{\sqrt{ab}.\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}.\Sigma\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\) \(=\dfrac{1}{2}.\left(a+b+c\right)=1\) 

22 tháng 5 2019

Ta có:

\(\frac{ab}{\sqrt{2017c+ab}}=\frac{ab}{\sqrt{\left(a+b+c\right)c+ab}}\)

\(=\frac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng BĐT AM-GM (cô si): \(ab.\frac{1}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}\)

Tương tự với hai BĐT còn lại và cộng theo vế,ta được:

\(A\le\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}+\frac{bc}{2\left(a+b\right)}+\frac{bc}{2\left(a+c\right)}+\frac{ca}{2\left(b+c\right)}+\frac{ca}{2\left(a+b\right)}\)

Thu gọn lại bằng cách cộng những phân thức cùng mẫu và rút gọn phân thức,ta được:

\(A\le\frac{a+b+c}{2}=\frac{2017}{2}\).

Dấu "=" xảy ra khi \(a=b=c=\frac{2017}{3}\)

Vậy...

2 tháng 10 2021

\(1,\)

Áp dụng BĐT Bunhiacopski:

\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)

Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)

 

2 tháng 10 2021

\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)

Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)

9 tháng 7 2020

Ta có  \(c+ab=\left(a+b+c\right)c+ab=ab+bc+c^2-ab=\left(a+c\right)\left(b+c\right)\)

Tương tự có  \(a+bc=\left(b+a\right)\left(c+a\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Khi đó : \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\)

Áp dụng BĐT AM-GM ta có 

\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

\(\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right)\)

\(\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{a+b}\right)\)

Cộng theo vế các bất đẳng thức cùng chiều

\(P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{b+a}{b+a}\right)=\frac{3}{2}\)

Vậy \(Max_P=\frac{3}{2}\)khi \(a=b=c=\frac{1}{3}\)

NV
24 tháng 9 2019

Chỉ tìm được khi a;b;c dương, còn ko có điều kiện dương thì chịu thua :(

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

12 tháng 7 2018

Ta có \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

=> \(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{1}{\frac{1}{2}\left(a+b\right)}=\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Chứng minh tương tự, rồi cộng lại, ta có 

A\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

dấu = xảy ra <=> a=b=c=1

^_^