Giải phương trình nghiệm nguyên dương: 3x+4x=5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NHÂN VỚI 4 TA CÓ
\(\Leftrightarrow12x^2-8xy+4y-20x+8=0\)0
\(\Leftrightarrow\left(12x^2-20x+6\right)-4y\left(2x-1\right)-\left(2x-1\right)+1=0\)
\(\Leftrightarrow2\left(2x-1\right)\left(3x-3\right)-4y\left(2x-1\right)-\left(2x-x\right)+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(6x-4y-7\right)=-1\)
ĐẾN ĐAY BẠN TỰ GIẢI
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(5x^4+y^2-4x^2y-85=0\)
\(\left(2x^2\right)^2-2.2x^2.y+y^2+x^4=85\)
\(\left(2x^2-y\right)^2+x^4=85\)
Mà \(85=2^2+3^4=\left(-2\right)^2+\left(-3\right)^4\)
Vì phương trình nghiệm nguyên nên:
\(\left(2x^2-y\right)^2+x^4=2^2+3^4\)
\(\Rightarrow\orbr{\begin{cases}2x^2-y=2\\x=3\end{cases}}\) hoặc \(\orbr{\begin{cases}2x^2-y=3\\x=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2.3^2-y=2\\x=3\end{cases}}\) hoặc \(\orbr{\begin{cases}2.2^2-y=3\\x=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}18-y=2\\x=3\end{cases}}\) hoặc \(\orbr{\begin{cases}8-y=3\\x=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=16\\x=3\end{cases}}\) hoặc \(\orbr{\begin{cases}y=5\\x=2\end{cases}}\)
Vậy..............
\(3^x+4^x=5^x\)
- \(x=1\)không thỏa.
- \(x=2\)thỏa.
- \(x>2\): \(5^x=5^2.5^{x-2}=\left(3^2+4^2\right).5^{x-2}=3^2.5^{x-2}+4^2.5^{x-2}>3^2.3^{x-2}+4^2.4^{x-2}=3^x+4^x\)
Vậy phương trình có nghiệm duy nhất \(x=2\)