K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Xem tại đây

6 tháng 5 2016

Đúng 1

NV
26 tháng 3 2022

Pt có 2 nghiệm khi: \(\Delta=25-8\left(m+1\right)\ge0\Rightarrow m\le\dfrac{17}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{m+1}{2}\end{matrix}\right.\)

Kết hợp Viet và điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\2x_1+3x_2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7}{2}\\x_1=-1\end{matrix}\right.\)

Thế vào \(x_1x_2=\dfrac{m+1}{2}\Rightarrow\dfrac{m+1}{2}=-\dfrac{7}{2}\)

\(\Rightarrow m=-8\)

a) Thay m=-4 vào phương trình, ta được:

\(x^2-2\cdot\left(-5\right)\cdot x+\left(-4\right)+4=0\)

\(\Leftrightarrow x^2+10x=0\)

\(\Leftrightarrow x\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-10\end{matrix}\right.\)

Vậy: Khi m=-4 thì phương trình có hai nghiệm phân biệt là {0;-10}

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Theo định lý Viet:

$x_1+x_2=3$

$x_1x_2=-7$

Khi đó:
$A=\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$

$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{3-2}{-7-3+1}=\frac{-1}{9}$

$E=x_1^4+x_2^4=(x_1^2+x_2)^2-2(x_1x_2)^2=[(x_1+x_2)^2-2x_1x_2]^2-2(x_1x_2)^2$
$=[3^2-2(-7)]^2-2(-7)^2=431$

a: Khi m=4 thì phương trình trở thành \(x^2-4x+3=0\)

=>(x-3)*(x-1)=0

=>x=3 hoặc x=1

b: \(x_1+x_2=m\)

\(x_1x_2=m-1\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)=m^2-2m+2\)

\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)

\(=\left(m^2-2m+2\right)^2-2\cdot\left(m-1\right)^2\)

\(=m^4+4m^2+4-4m^3+4m^2-8m-2m^2+4m-2\)

\(=m^4-4m^3+2m^2-4m+2\)