K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2020

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=1\\x^3-y^3=2xy+3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-y=1\\x^3-y^3=2xy+3\end{cases}}\)hay \(\hept{\begin{cases}x-y=-1\\x^3-y^3=2xy+3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1\\\left(y+1\right)^3-y^3\end{cases}=2\left(y+1\right)y+3}\)hay \(\hept{\begin{cases}x=y-1\\\left(y-1\right)^3-y^3=2\left(y-1\right)y+3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y^3+3y^2+3y+1-y^3=2y^2+2y+3\end{cases}}\)

hay \(\hept{\begin{cases}x=y-1\\y^3-3y^2+3y-1-y^3=2y^2-2y+3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y^2+y-2=0\end{cases}}\)hay \(\hept{\begin{cases}x=y-1\\y^2-y+\frac{4}{5}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1\\\left(y-1\right)\left(y+2\right)=0\end{cases}}\)hay \(\hept{\begin{cases}x=y-1\\\left(y-\frac{1}{2}\right)^2+\frac{11}{20}=0\left(VN\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)hay \(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

2 tháng 12 2019

\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\left(1\right)\\x^2-y^3+xy=1\left(2\right)\end{cases}}\)

(2) <=> \(3x^2-3y^3+3xy=3\left(3\right)\)

Lấy (3) - (1):

\(x^2-2y^3+xy-2xy^2=0\)

<=> \(x\left(x+y\right)-2y^2\left(x+y\right)=0\)

<=> \(\left(x+y\right)\left(x-2y^2\right)=0\)

<=> \(\orbr{\begin{cases}x=-y\\x=2y^2\ge0\left(loại\right)\end{cases}}\)

Với x = -y thế vào (2) ta có: \(y^2-y^3-y^2=1\Leftrightarrow-y^3=1\Leftrightarrow y=-1\)

khi đó: x = 1

Vậy ( 1; -1 ) là nghiệm hệ phương trình.

12 tháng 8 2017

\(\hept{\begin{cases}x^3+y^3=1\\x^2y+2xy^2+y^3=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)\left(x^2-xy-y^2\right)=1\\\left(x+y\right)\left(y^2+xy\right)=2\end{cases}}\)

\(\Rightarrow y^2+xy=2\left(x^2-xy+y^2\right)\Leftrightarrow\left(x-y\right)\left(2x-y\right)=0\)

10 tháng 10 2017

\(\hept{\begin{cases}x^2+y^4-2xy^3=0\left(1\right)\\x^2+2y^2-2xy=1\left(2\right)\end{cases}}\)

Thế (2) vào 1 ta được

\(\left(x^2+2y^2-2xy\right)x^2+y^4-2xy^3=0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+y^2\right)=0\)

\(\Leftrightarrow x=y\)

Thế vô (2) ta được

\(x^2+2x^2-2x^2=1\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^4=2xy^3&\left(x-y\right)^2+y^2=1&\end{cases}}\)

áp dụng bđt cô si ta có:

\(x^2+y^4\ge2xy^2\Leftrightarrow2xy^3\ge2xy^2\Rightarrow y\ge1\)

\(\Rightarrow\left(x-y\right)^2+y^2\ge0+1=1\Rightarrow x=y=1\)

Dùng cái đầu đi ạ

4 tháng 2 2019

Rút y từ phương trình đầu thế vô phương trình dưới rồi quy đồng lên được. 

(x² + 5x + 1)² = 0

4 tháng 2 2019

A ali : em có cách khác :D

Cộng 2 vế của 2 pt trên lại với nhau ta được

\(x^2-2xy+x-2y+3+y^2-x^2+2xy+2x-2=0\)

\(\Leftrightarrow y^2-2y+3x+1=0\)

\(\Leftrightarrow\left(y-1\right)^2=-3x\)

\(\Leftrightarrow\hept{\begin{cases}x\le0\\y=\sqrt{-3x}+1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\y=-\sqrt{-3x}+1\end{cases}}}\)

Đến đây thế vào pt (2) sẽ tìm đc x 

Nói chung làm cách a ali sẽ dễ hơn . cách của tớ cũng là 1 cách nhưng không được hay cho lắm :V

30 tháng 10 2017

chị ơi ko biết 

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........