\(\frac{28}{x-12}=\frac{35}{y-15}=\frac{63}{z-27};xy=3920\) Tim x;y;z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-9=15k\\y-12=20k\\z-24=40k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=15k+9\\y=20k+12\\z=40k+24\end{array}\right.}\)
ta có:
x.y=1200\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\Rightarrow\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}=k\)
=> (15k+9)(20k+12)=1200
=> 3.4(5k+3)(5k+3)=1200
=> (5k+3)2=100
=> 5k+3=\(\pm\)10
=> \(\left[\begin{array}{nghiempt}5k+3=10\\5k+3=-10\end{cases}\Rightarrow\left[\begin{array}{nghiempt}5k=7\\5k=-13\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}k=\frac{7}{5}\\k=-\frac{13}{5}\end{array}\right.}\)
* với k=7/5
x=7/5x15+9=30
y=7/5x20+12=40
z=7/5x40+24=80
* với k=-13/5
x=-13/5x15+9=-30
y=-13/5x20+12=-40
z=-13/5x40+24=-80
b)
\(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21}\Rightarrow\frac{x-30}{40}=\frac{y-50}{20}=\frac{z-21}{28}k=\)
=>\(\left[\begin{array}{nghiempt}x-30=40k\\y-50=20k\\z-21=28k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=40k+30\\y=20k+50\\z=28k+21\end{array}\right.}\)
ta có:
x.y.z=22400
=> (40k+30)(20k+50)(28k+21)=22400
c) 15x=-10y=6z
\(\Rightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=-\frac{y}{3}=\frac{z}{5}=k\)
=> \(\left[\begin{array}{nghiempt}x=2k\\y=-3k\\z=5k\end{array}\right.\)
ta có:
x.y.z=30000
=> 2k.(-3k).5k=30000
=> k3=1000
=> k=10
ta có: x=10x2=20
y=10.(-3)=-30
z=10.5=50
=>\(\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
=>\(\frac{x}{15}=1=>x=15\)
=>\(\frac{y}{20}=1=>y=20\)
=>\(\frac{z}{28}=1=>z=28\)
vậy:\(x=15;y=20;z=28\)
để\(\frac{x}{y}\)=\(\frac{28}{35}\)thì\(\frac{x.d}{y.d}\)=\(\frac{28}{35}\)(1)
\(\Rightarrow\)d\(\in\)ƯC(28,35)
28=22.7
35=5.7
ƯCLN(28,35)=7
ƯC(28,35)=Ư(7)=\(\left\{\pm1;\pm7\right\}\)
thay d vào (1)
lập bảng
x.1 | 28 |
y.1 | 35 |
x | 28 |
y | 35 |
x.(-1) | 28 |
y.(-1) | 35 |
x | -28 |
y | -35 |
x.7 | 28 |
y.7 | 35 |
x | 4 |
y | 5 |
x.(-7) | 28 |
y.(-7) | 35 |
x | -4 |
y | -5 |
\(M=\frac{2x+y+z-15}{x}+\frac{x+2y+z-15}{y}+\frac{x+y+2z-15}{z}\)
\(M-3=\frac{x+y+z-15}{x}+\frac{x+y+z-15}{y}+\frac{x+y+z-15}{z}\)
\(M-3=\left(x+y+z-15\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow M\ge\left(x+y+z-15\right)\cdot\frac{9}{x+y+z}+3=\frac{3}{4}\)
\("="\Leftrightarrow x=y=z=4\)
Bài 1
M=2x+y+z−15x+x+2y+z−15y+x+y+2z−15z
M=x+12−15x+y+12−15y+z+12−15z
M=x−3x+y−3y+z−3z
M=1−3x+1−3y+1−3z
M=3−(3x+3y+3z)
M=3−3(1x+1y+1z)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
⇒1x+1y+1z≥(1+1+1)2x+y+z=9x+y+z=34
⇒3(1x+1y+1z)≥94
⇒3−3(1x+1y+1z)≤34
⇔M≤34
Vậy M max=34
Dấu " = " xảy ra khi x=y=z=4
Bai nay tim GTLN moi dung nha