K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2020

Ta có :a2 +b2+c2  =5  (a+b+c)-2ab <=> (a+b)2+c2=5(a+b+c)

Áp dụng bđt bunhiacopxki có:

(a+b)2 +c2 > 1/2 (a+b+c)2

=> 1/2 (a+b+c)2 < 5(a+b+c) => 0< a+b+c <10

Áp dụng bđt Cauchy ta có:

\(\sqrt{\frac{3}{\sqrt{a+10}}}=\frac{1}{\sqrt{\frac{a+10}{3}}}\):\(\sqrt{\frac{a+10}{3}}\)

=\(\frac{1}{2}\sqrt{\frac{a+10}{3}\cdot}4\) 1/4 (\(\frac{a+10}{3}+4\))

= a+22/12 => \(\frac{\sqrt{3}}{\sqrt{a+10}}\) \(\frac{12}{â+22}\)

\(\sqrt[3]{b+c}=\frac{1}{4}\sqrt[3]{\left(b+c\right)8.8}\)< \(\frac{1}{4}\cdot\frac{b+c+8+8}{3}\)

=\(\frac{b+c+16}{12}\)=> \(\frac{1}{\sqrt[3]{b+c}}\)> \(\frac{12}{b+c+16}\)

=> P > a= b+c+48 . 12 (\(\frac{1}{a+22}+\frac{1}{b+c+16}\))

Áp dụng bđt Cauchy - Schwarz ta được :

\(\frac{1}{a+22}+\frac{1}{b+c+16}\)> \(\frac{4}{a+b+c}+38\)=> P a+b+c+\(\frac{2304}{a+b+c+38}\)

Đặt t= a+b+c => t\(\in\)(0;10) => P> t+\(\frac{2304}{t+38}\)

Xét hàm f(t) = t+\(\frac{2304}{t+38}\)trên ( 0;10)

Ta có : f(t) =1-\(\frac{2304}{\left(t+38\right)^2}=\frac{\left(t-10\right)\left(t+86\right)}{\left(t+38\right)^2}\)

=> f(t)< 0 \(\forall\)\(\in\)( 0:10)

=> f(t) nghịch biến trên (0;10) => f(t)  f(10) \(\forall\)\(\in\)(0;10); f(10) =58 => P>58

Daaus "=" xảy ra khi \(\hept{\begin{cases}a+b+c=10\\a+b=c\\\frac{a+10}{3}\end{cases}}\)hoặc b+c=8 \(\hept{\begin{cases}a=2\\b=3\\c=5\end{cases}}\)

Vậy min P =58 khi a=2 , b=3 , c=5 

HỌC TỐT 

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

4 tháng 4 2020

Bài 1 :

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

b) Để \(A< -1\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)

\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}< 1\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)

\(\Leftrightarrow x< \frac{1}{4}\)

Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)

25 tháng 4 2020

Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)

Với x,y dương ta có 2 bất đẳng thức phụ sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)

Áp dụng (*) và (**), ta có:

\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)

Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)

\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)

Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:

\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))

Đẳng thức xảy ra khi \(a=b=c\)

25 tháng 4 2020

Bạn bổ sung cho mình dòng cuối là a = b = c = 1 nhé!

1 tháng 5 2016

Đặt \(\frac{1}{a}=x>0;\frac{1}{b}=y>0;\frac{1}{c}=z>0\)

Từ giả thiết ta có: \(7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\le6\left(x^2+y^2+z^2\right)+2015\)

\(\Leftrightarrow x^2+y^2+z^2\le2015\)

Ta có: \(\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}=\frac{1}{\sqrt{\left(4a^2+b^2\right)+\left(2a^2+2b^2\right)}}\le\frac{1}{\sqrt{4a^2+b^2+4ab}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(2x+y\right)\)

Tương tự thì: \(\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\frac{1}{9}\left(2y+z\right)\)  và \(\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{1}{9}\left(2z+x\right)\)

Cộng từng vế 3 BĐT trên ta có: \(\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\le\sqrt{\frac{2015}{3}}\)

Vậy max \(P=\sqrt{\frac{2015}{3}}\)  , đạt được khi \(a=b=c=\sqrt{\frac{3}{2015}}\)

20 tháng 11 2019

Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo.

20 tháng 11 2019

Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)

Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b=  c = 2

20 tháng 11 2019

Có cách UCT :)

\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)

Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..

29 tháng 6 2017

Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)

\(\Leftrightarrow xy+yz+zx=1\)

Ta có:

\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)

\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)

\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)

\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)

29 tháng 6 2017

Nhầm dấu = xảy ra khi \(a=b=c=\sqrt{3}\) chứ.

6 tháng 8 2020

\(P=\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)

\(=\frac{3a+3b+2c}{\sqrt{6\left(a^2+ab+bc+ca\right)}+\sqrt{6\left(b^2+ab+bc+ca\right)}+\sqrt{c^2+ab+bc+ca}}\)(Do ab + bc + ca = 5)

\(=\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT AM - GM, ta được:

\(\sqrt{6\left(a+b\right)\left(a+c\right)}=2\sqrt{\frac{6}{4}\left(a+b\right)\left(a+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(a+c\right)=\frac{5}{2}a+\frac{6}{4}b+c\)

\(\sqrt{6\left(b+a\right)\left(b+c\right)}=2\sqrt{\frac{6}{4}\left(b+a\right)\left(b+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(b+c\right)=\frac{6}{4}a+\frac{5}{2}b+c\)

\(\sqrt{\left(c+a\right)\left(c+b\right)}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}=c+\frac{a}{2}+\frac{b}{2}\)

Cộng theo vế của 3 BĐT trên, ta được: \(\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)\(\le\frac{9}{2}a+\frac{9}{2}b+3c\)

\(\Rightarrow\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)\(\ge\frac{3a+3b+2c}{\frac{9}{2}a+\frac{9}{2}b+3c}=\frac{2}{3}\)

Đẳng thức xảy ra khi \(a=b=1;c=2\)