K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2020

a, \(A=x\left(x+4\right)-6\left(x-1\right)\left(x+1\right)+\left(2x-1\right)^2\)

\(=x^2+4x-6\left(x^2-1\right)+4x^2-4x+1\)

\(=5x^2+1-6x^2+6=-x^2+7\)

b, Ta co :A = 3 hay  \(-x^2+7=3\)

\(\Leftrightarrow-x^2=-4\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

30 tháng 12 2020

a) \(ĐKXĐ:x>0\)

\(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(\Leftrightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)

\(\Leftrightarrow A=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(\Leftrightarrow A=x-\sqrt{x}\)

b) Để A = 0

\(\Leftrightarrow x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

vậy ...

28 tháng 11 2021

\(a,B=\dfrac{-\sqrt{x}-3+\sqrt{x}-3+x+4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\left(x\ge0;x\ne9\right)\\ B=\dfrac{x-2}{x-9}=\dfrac{x-9+7}{x-9}=1+\dfrac{7}{x-9}\in Z\\ \Leftrightarrow x-9\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{2;8;11;16\right\}\)

Vậy giá trị x thỏa đề là \(x=2\)

a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)

b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)

\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)

\(\Leftrightarrow2x\sqrt{2}=-4\)

hay \(x=-\sqrt{2}\)

a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)

b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

17 tháng 7 2021

a) \(M=\left(\dfrac{2x+3\sqrt{x}}{x\sqrt{x}+1}+\dfrac{1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\left(x>0\right)\)

\(=\left(\dfrac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2x+3\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}\)

b) Ta có: \(\sqrt{x}+4>\sqrt{x}+1\Rightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}+1}>1\)

c) \(\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

Ta có: \(\left\{{}\begin{matrix}3>0\\\sqrt{x}+1>0\end{matrix}\right.\Rightarrow1+\dfrac{3}{\sqrt{x}+1}>1\Rightarrow M>1\)

Lại có: \(\sqrt{x}+1>1\left(x>0\right)\Rightarrow\dfrac{3}{\sqrt{x}+1}< 3\Rightarrow1+\dfrac{3}{\sqrt{x}+1}< 4\Rightarrow M< 4\)

\(\Rightarrow1< M< 4\Rightarrow M\in\left\{2;3\right\}\)

\(M=2\Rightarrow1+\dfrac{3}{\sqrt{x}+1}=2\Rightarrow\dfrac{3}{\sqrt{x}+1}=1\Rightarrow\sqrt{x}+1=3\)

\(\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(M=3\Rightarrow1+\dfrac{3}{\sqrt{x}+1}=3\Rightarrow\dfrac{3}{\sqrt{x}+1}=2\Rightarrow2\sqrt{x}+2=3\)

\(\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)

19 tháng 12 2021

a: \(P=\dfrac{x^2+x-x^2+x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)

26 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)

b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)

\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)