K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a: Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

P là trung điểm của GB

Q là trung điểm của GC

Do đó: PQ là đường trung bình của ΔGBC

Suy ra: PQ//BC và \(PQ=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

6 tháng 10 2021

\(a,\left\{{}\begin{matrix}AN=NB\\AM=MC\end{matrix}\right.\Rightarrow MN\) là đtb tam giác ABC

\(\Rightarrow MN//BC\Rightarrow BNMC\) là hình thang

\(b,\) G là giao điểm 2 trung tuyến tam giác ABC nên là trọng tâm tam giác ABC

Mà AI cũng là trung tuyến tam giác ABC nên \(G\in AI\) hay A,I,G thẳng hàng

\(c,\left\{{}\begin{matrix}AM=MC\\BI=IC\end{matrix}\right.\Rightarrow MI\) là đtb tam giác ABC \(\Rightarrow MI=\dfrac{1}{2}AB\Rightarrow2AB=MI\)

\(d,\left\{{}\begin{matrix}BH=HG\\CK=KG\end{matrix}\right.\Rightarrow HK\) là đtb tam giác BGC

\(\Rightarrow HK=\dfrac{1}{2}BC=MN\) ( MN là đtb tam giác ABC)

Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)(1)

Xét ΔGBC có 

E là trung điểm của GB(gt)

F là trung điểm của GC(gt)

Do đó: EF là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra NM//EF và NM=EF

31 tháng 10 2021

a: Xét ΔABC có

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)

Do đó: MN//BC

Xét tứ giác BNMC có MN//BC

nên BNMC là hình thang

mà \(\widehat{NBC}=\widehat{MCB}\)

nên BMNC là hình thang cân

31 tháng 10 2021

Mk cảm ơn nhiều nhưng còn các câu còn lại giúp mk vs ạ

a: Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

Xét tứ giác BNMC có NM//BC

nên BNMC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BNMC là hình thang cân

a) Ta có: BM là đường trung tuyến ứng với cạnh AC trong ΔABC(gt)

nên M là trung điểm của AC

Ta có: CN là đường trung tuyến ứng với cạnh AB trong ΔBAC(gt)

nên N là trung điểm của AB

Xét ΔABC có 

M là trung điểm của AC(cmt)

N là trung điểm của AB(cmt)

Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên NM//BC và \(NM=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Xét ΔYBC có

E là trung điểm của YB(gt)

F là trung điểm của YC(gt)

Do đó: EF là đường trung bình của ΔYBC(Định nghĩa đường trung bình của tam giác)

nên EF//BC và \(EF=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra NM//EF và NM=EF

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔANC và ΔAMB có 

AN=AM(cmt)

\(\widehat{NAC}\) chung

AC=AB(ΔABC cân tại A)

Do đó: ΔANC=ΔAMB(c-g-c)

nên CN=BM(Hai cạnh tương ứng)

Xét ΔABC có 

BM là đường trung tuyến ứng với cạnh AC(gt)

CN là đường trung tuyến ứng với cạnh AB(gt)

BM cắt CN tại Y(gt)

Do đó: Y là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

\(\Rightarrow BY=\dfrac{BM}{2}\) và \(CY=\dfrac{CN}{2}\)

mà BM=CN(cmt)

nên BY=CY

mà \(EY=\dfrac{YB}{2}\)(E là trung điểm của YB)

và \(FY=\dfrac{YC}{2}\)(F là trung điểm của YC)

nên EY=FY

Ta có: YM+BY=BM(Y nằm giữa B và M)

YN+YC=NC(Y nằm giữa N và C)

mà BM=NC(cmt)

và BY=YC(cmt)

nen YM=YN

Ta có: YM+YE=ME(Y nằm giữa M và E)

YN+YF=NF(Y nằm giữa N và F)

mà YM=YN(cmt)

và YE=YF(cmt)

nên ME=NF

Xét tứ giác NMFE có 

NM//FE(cmt)

NM=FE(cmt)

Do đó: NMFE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành NMFE có NF=EM(cmt)

nên NMFE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: \(EF=\dfrac{BC}{2}\)(cmt)

mà BC=18(gt)

nên \(EF=\dfrac{18}{2}=9\)(đvđd)

Xét ΔAYB có 

N là trung điểm của AB(cmt)

E là trung điểm của BY(cmt)

Do đó: NE là đường trung bình của ΔAYB(Định nghĩa đường trung bình của tam giác)

nên NE//AY và \(NE=\dfrac{AY}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AY=12

nên \(NE=\dfrac{12}{2}=6\left(đvđd\right)\)

Ta có: NMFE là hình chữ nhật(cmt)

nên \(C_{NMFE}=\left(NE+EF\right)\cdot2=\left(6+9\right)\cdot2=30\left(đvcv\right)\)