Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) ta có : ED là đường trung bình của tam giác ABC vậy ED song song với BC và ED=1/2BC*
HK là đường trung bình của tam giác BGC vậy HK song song với BC và HK=1/2BC**
Từ *và ** suy ra : ED=HK=1/2BC; ED song song với HK
vậy suy ra tứ giác EDHK là HBH
B) Nếu cần điều kiện từ tam giác ABC để tứ giác EDHK là HCN thì tam giác ABC cân tại A
Vì khi tam giác ABC cân tại A thì ta sẽ có : EB=DC
xét tam giác EBC và tam giác DCB có :
EB=DC ( theo CM trên )
BC cạnh chung
góc EBC = góc DCB ( vì ta đưa ra giả thiết tam giác ABC cân tại A)
vậy tam giác EBC= tam giác DCB
suy ra : EC=DB
mà ta lại có : EK=1/2EC
DH=1/2DB
vậy EK=DB: mà theo phần a ta lại có tứ giác DEHK là HBH
vậy tứ giác DEHK là HCN
TL:
a,Glà trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
^HT^
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
Xét tứ giác BNMC có NM//BC
nên BNMC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BNMC là hình thang cân
GT KL Tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G, MB = MG, NG = NC a) MNDE là hình bình hành b) Điều kiện của tam giác ABC để tứ giác MNDE là hình chữ nhật, hình thoi, hình vuông
A B C E D G M N
Hình tự vẽ
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )
Bài làm
a) Xét tam giác ABC có:
E là trung điểm của AB ( do CE trung tuyến )
D là trung điểm của AC ( Do BD trung tuyến )
=> ED là đường trung bình
=> ED = 1/2 BC và ED // BC (1)
Xét tam giác GBC có:
M là trung điểm BG ( gt )
N là trung điểm GC ( gt )
=> MN là đường trung bình.
=> MN = 1/2 BC và MN // BC (2)
Từ (1) và (2) => MN = ED và MN // ED
Xét tứ giác MNDE có:
MN = ED
MN // ED
=> MNDE là hình bình hành.
b) Để MNDE là hình chữ nhật
<=> ME | MN
Giả sử tam giác ABC cân tại A
Nối AG
Xét tam giác ABG có:
E là trung điểm AB
M là trung điểm BG
=> ME là đường trung bình.
=> ME = 1/2 AG và ME // AG
Vì CE và BD ;à đường trung tuyến và cắt nhau tại G
=> G là giao điểm của 3 đường trung tuyến của tam giác ABC
=> AG là đường trung tuyến
Mà tam giác ABC cân ( theo giả sử )
=> AG vuông góc với BC
Hay AG cũng vuông góc với MN ( do BC // MN ở câu a )
Mà ME // AG
=> MN vuông góc với ME
Mà MNDE là hình bình hành
=> MNDE là hình chữ nhật.
cứ thế tự chứng minh là hình thoi rồi sẽ ra hình vuông nha. vì chỗ này dễ rồi. nên mik k chứng minh.
c) Vì MN = 1/2 BC ( cmt )
DE = 1/2 BC ( cmt )
=> MN + DE = 1/2 + BC + 1/2 BC = BC ( 1/2 + 1/2 ) = BC . 2/2 = BC . 1 = BC
=> MN + DE = BC ( đpcm )
# Học tốt #