K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
24 tháng 11 2020

\(B=\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=1+\frac{4}{x-2}\)

\(B\)nguyên suy ra \(\frac{4}{x-2}\)nguyên mà \(x\inℤ\)suy ra \(\left(x-2\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)

Thử lại các giá trị đều thỏa mãn. 

B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)    + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(x\ge0\)\(x\ne2;3\))

   = \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=  \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)\(1+\frac{4}{\sqrt{x}-3}\)

để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)

ta có bảng sau

\(\sqrt{x}-3\)                    1            -1           2            -2           4            -4

\(\sqrt{x}\)                            4                 2         5           1          7            -1 (L)

x                                     16                    4      25        1           49

vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }

#mã mã#

28 tháng 12 2016

a)

1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)

A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)

<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)

2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)

B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)

<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)

Vậy .............

b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1

13 tháng 1 2018

bài của trà my sai chỗ

4x-8+1=4*(x-2)+1

18 tháng 3 2019

a) Ta co \(A=\frac{4-x}{x-2}=\frac{-\left(x-4\right)}{x-2}=\frac{-\left(x-2\right)+2}{x-2}\)\(=\frac{-\left(x-2\right)}{x-2}+\frac{2}{x-2}\)\(=-1+\frac{2}{x-2}\)

De A nguyen <=> \(-1+\frac{2}{x-2}\)nguyen <=> \(2⋮x-2\)

=> \(x-2\in U\left\{2\right\}=\left\{-2:-1;1;2\right\}\)

\(x-2=-2\)=>\(x=0\)(thoa)

\(x-2=-1\)=>\(x=1\)(thoa)

\(x-2=1\)=>\(x=3\)(thoa)

\(x-2=2\)=>\(x=4\)(thoa)

xin loi mk lam duoc den day thoi

18 tháng 3 2019

a) Ta có : \(A=\frac{4-x}{x-2}=\frac{-x+4}{x-2}=\frac{-\left(x-4\right)}{x-2}\)

\(=\frac{-\left(x-2-2\right)}{x-2}=-1+\frac{2}{x-2}\)

Do đó: A nguyên <=> \(\frac{2}{x-2}\) nguyên <=> 2 chia hết cho x -2 ( vì x - 2 thuộc Z )

   <=> x -2 thuộc Ư(2) = { -1;1;-2;2   <=> x thuộc { 1; 3; 0; 4 }

Vậy x = ....................

b) Vì \(A=-1+\frac{2}{x-2}\) nên A đạt giá trị nhỏ nhất <=> 2/x-2 có giá  trị nhỏ nhất

        <=> x - 2 bé hơn 0 và có giá trị lớn nhất <=> x - 2 = -1 <=> x = 1

Khi đó : A = \(-1+\frac{2}{1-2}=-1-2=-3\)

Vậy .................................

5 tháng 5 2018

a

B=x-4+9/x-4

B=X-4/X-4+9/X-4

B=1+9/x-4

để B thuộc z suy ra 9/x-4 thuộc z

suy ra x-4 thuộc vào Ư của 9

x-4=1 suy ra x=5 suy ra B=10

x-4=3 suy ra x=7 suy ra B=4

x-4=9 suy ra x= 13 suy ra B=2

x-4=-1 suy ra x= 3 suy ra B=-8

x-4=-3 suy ra x=1 suy ra B=-2

x-4=-9 suy ra x=-5 suy ra B=0

b

ta có :

B= 1+9/x-4

để B lớn nhất suy ra 9/x-4 lớn nhất suy ra x-4=1 suy ra x=5

suy ra Bmax=10 khi x=5

c tao có:

B=1+9/x-4

để B nhỏ nhất suy ra 9/x-4 nhỏ nhất suy ra x-4=-1 suy ra x=3

suy ra 9/x-4=-9

suy ra Bmin=-8 khi x=3

2 tháng 2 2017

a) Muốn C \(\in\)Z thì x+12    \(⋮\)x+5

                        \(\Rightarrow\) x+5+7 \(⋮\)x+5

                       \(\Rightarrow\)         7 \(⋮\)x+5

                       \(\Rightarrow\) x+5 \(\in\){-7 ; -1 ; 1 ; 7}

TH1:  x+5 = -7 \(\Rightarrow\) x= -12

TH2: x+5 = -1 \(\Rightarrow\) x= -6

TH3: x+5= 1  \(\Rightarrow\) x= -4

TH4: x+5= 7  \(\Rightarrow\)x= 2

Vậy x\(\in\){ -12 ; -6 ; -4 ; 2 }  thì \(\frac{x+12}{x+5}\)có giá trị nguyên

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}

\(B=\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

Để B nguyên thì \(\sqrt{x}-3\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;8\right\}\)

hay \(x\in\left\{16;4;64\right\}\)

 

4 tháng 11 2018

Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(B\in Z\Rightarrow\frac{7}{x^2-x+1}\in Z\Rightarrow7⋮\left(x^2-x+1\right)\Rightarrow x^2-x+1\in\left\{1;7\right\}\left(x^2-x+1>0\right)\)

TH1: \(x^2-x+1=1\Rightarrow x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\) (thỏa mãn)

TH2: \(x^2-x+1=7\Rightarrow x^2-x-6=0\Rightarrow\left(x+2\right)\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)(thỏa mãn) 

Vậy \(x\in\left\{0;1;-2;3\right\}\)