K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

29 tháng 3 2015

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

29 tháng 3 2015

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

11 tháng 4 2019

a= [n(n+3][(n+1)(n+2)]+1

a=[n^2+3n][n^2+3n+2]+1

ĐẶt n^2+3n+1=b( b thuộc Z)

=> a=(b-1)(b+1)+1

=> a=b^2-1+1

=> a=b^2

=> a=(n^2+3n+1)^2

Mà n là số tự nhiên =>  n^2+3n+1 là số nguyên => a là số chính phương

T i ck nha

a=n(n+1)(n+2)(n+3)+1

=(n2+3n)(n2+3n+2)+1

Đặt n2+3n+1=m(m thuộc N*)

=>a= (m-1)(m+1)+1=m2

Vậy...................

21 tháng 11 2016

Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)

Đặt \(n^2+3=t\)

=> \(A=t\left(t+2\right)+1\)

\(=t^2+2t+1\)

\(=\left(t+1\right)^2\)

=> A là số chính phương

Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
 

 

2 tháng 5 2020

Để chứng minh n2+n+1 không thể là số chính phương ta sẽ chứng minh n2+n+1 không chia hết cho 9

Giả sử n2+n+1 chia hết cho 9

<=> n2+n+1=9k (k thuộc N)

<=> n2+n+1-9k=0 (1)

\(\Delta=1^2-4\left(1-9k\right)=36k-3=3\left(12k-1\right)\)

Ta thấy \(\Delta⋮3\)và không chia hế cho hết cho 9 nên không là số chính phương => pt (1) trên không thể nghiệm nguyên

Vậy n2+n+1 không chia hết cho 9 hay n2+n+1 không là số chính phương

22 tháng 1 2018

A = [n.(n+3)] . [(n+1).(n+2)]

   = (n^2+3n).(n^2+3n+2) > (n^2+3n)^2    (1)

Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2    (2)

Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2

=> A ko phải là số chính phương

Tk mk nha