60x – 3.(x – 2) = 51
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=60\cdot\dfrac{17}{20}=51\)
b: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}=\dfrac{1}{5}\)
a.
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3-\left(3x-5\right)\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{3x-5}=2x-3\)
\(\Leftrightarrow3x-5=\left(2x-3\right)^3\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+3x-2-\sqrt[3]{81x-8}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{\left(3x-2\right)^3-\left(81x-8\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{27\left(x^3-2x^2-\dfrac{5}{3}x\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow\left(x^3-2x^2-\dfrac{5}{3}x\right)\left(1+\dfrac{27}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}\right)=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x=0\)
Gọi cạnh hình lập phương là \(a\left(cm\right)\)thể tích hình lập phương là \(V\left(cm^3\right)\).
Ta có: \(V=a^3\Rightarrow8x^3+60x^2+150x+125=a^3\)
\(\Rightarrow a^3=\left(2x+5\right)^3\Rightarrow a=2x+5\left(cm\right)\).
\(\Rightarrow\) Diện tích toàn phần của hình lập phương là: \(6a^2=6\left(2x+5\right)^2\left(cm^2\right)\).
\(\Rightarrow\) Diện tích toàn phần của 3 hình lập phương như thế là: \(3.6\left(2x+5\right)^2=18\left(2x+5\right)^2\left(cm^2\right)\).
\(60x-3\left(x-2\right)=51\)
\(\Rightarrow60x-3x+6=51\)
\(\Rightarrow57x=45\Rightarrow x=\dfrac{15}{19}\)
60x - 3(x - 2) = 51
<=> 60x - 3x + 6 = 51
<=> 57x = 45
<=> \(x=\dfrac{15}{19}\)