Phân tích đa thức thành nhân tử
a^4 -4a^3+ 4a^2
a^2-2a -4b^2 -4b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+2a-2b-2ab=a^2-2ab+b^2+2\left(a-b\right)\)
\(=\left(a-b\right)^2+2\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+2\right)\)
\(4a^2-4b^2-4a+1=4a^2-4a+1-\left(2b\right)^2\)
\(=\left(2a-1\right)^2-\left(2b\right)^2\)
\(=\left(2a-1-2b\right)\left(2a-1+2b\right)\)
\(4a^2-4a+1-4b^2\)
<=>\(\left(2a-1\right)^2-4b^2\)
<=>\(\left(2a-1+2b\right)\left(2a-1-2b\right)\)
\(4a^2-4a+1-4b^2\)
\(=\left(2a-1\right)^2-4b^2\)
\(=\left(2a-1+2b\right)\left(2a-1-2b\right)\)
1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)
2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)
3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3
4a2=4b2-4a+1
=(2a)2-2*2a*1+12-4b2= (2a-1)2-(2b)2(2a-1-2b)(2a-1+2b)
1, \(a^3-a^2-a^2+a\)
\(=a^2\left(a-1\right)-a\left(a-1\right)\)
\(=\left(a^2-a\right)\left(a-1\right)\)
\(=a\left(a-1\right)\left(a-1\right)\)
\(=a\left(a-1\right)^2\)
2,\(=2\left(b^2+2b+1-c\right)\)
a) =2(a+b)
b) =2(a-2b)
c) =2(a+2b-3c)
d) =3(a-2b+3c)
e)= -4(a+2b+3c)
f) =-5(x+2xy+3y)
g) =-7(a+2ab+3b)
h) = 6(xy-2x-3y)
k) = 8(xy-3y+2x)
n)=9(ab-2a+1)