Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)
2303 = (23)101 = 8101
3202 = (32)101 = 9101
Vì 8101 < 9101 nên 2303 < 3202
`@` `\text {Ans}`
`\downarrow`
\(202^{303}\text{ và }303^{202}\)
Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}\)
\(303^{202}=303^{101\cdot2}=\left(303^2\right)^{101}\)
So sánh `202^3` và `303^2`, ta có:
`202^3 = (2*101)^3 = 2^3 * 101^3 = 8 * 101^3 = 8* 101^2 * 101 = 808*101^2`
`303^2 = (3*101)^2 = 3^2 * 101^2 = 9 * 101^2`
Vì `9 < 808 \Rightarrow 9*101^2 < 808*101^2`
`\Rightarrow`\(202^{303}>303^{202}\)
Vậy, \(202^{303}>303^{202}.\)
So sánh lũy thừa :
\(3^{202};2^{303}\)
\(3^{202}>2^{303}\)
Chúc bạn học giỏi !