Cho 3 số x, y, z thoả mãn:
x+y+z=0 và x2+y2+z2=a2
Tính x4+y4+z4 theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào
\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)
Ta có
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)
Bình phương 2 vế của (1)
\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)
Do x+y+z=0 nên
\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)
Thay (3) vào (2)
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)
Có x+y+z=0
<=>(x+y+z)+(x+y+z)=0
<=>x+y+z+x+y+z=0
<=>2x+2y+2z=0
<=>(2x+2y+2z).2=0(1)
Tương tự có :(4x+4y+4z).2=0(2)
Từ (1)và(2) có (x2+y2+z2).2=2.(x4+y4+z4)
Chúc bạn học tốt nha
Bài 3:
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x^2-9\right)\left(x^2-1\right)+15\)
\(=x^4-10x^2+9+15\)
\(=x^4-10x^2+24\)
\(=\left(x^2-4\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Ta có:
\(x^4\ge0\); \(y^4\ge0\) ;\(z^4\ge0\)
\(\Rightarrow x^4+y^4+z^4\ge0\)
Ta cũng có:
\(x^2\ge0\); \(y^2\ge0\) ;\(z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge0\)
Mà: \(x^4>x^2;y^4>x^2;z^4>z^2\)
\(\Rightarrow x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right):3\) (đpcm)
\(A\le\sqrt{3\left(x+y+y+z+z+x\right)}=\sqrt{6\left(x+y+z\right)}\le\sqrt{6.\sqrt{3\left(x^2+y^2+z^2\right)}}=\sqrt{6\sqrt{3}}\)
\(A_{max}=\sqrt{6\sqrt{3}}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Do \(x^2+y^2+z^2=1\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow x+y+z\ge x^2+y^2+z^2=1\)
\(A^2=2\left(x+y+z\right)+2\sqrt{\left(x+y\right)\left(x+z\right)}+2\sqrt{\left(x+y\right)\left(y+z\right)}+2\sqrt{\left(y+z\right)\left(z+x\right)}\)
\(A^2=2\left(x+y+z\right)+2\sqrt{x^2+xy+yz+zx}+2\sqrt{y^2+xy+yz+zx}+2\sqrt{z^2+xy+yz+zx}\)
\(A^2\ge2\left(x+y+z\right)+2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=4\left(x+y+z\right)\ge4\)
\(\Rightarrow A\ge2\)
\(A_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị
Với điều kiện x + y + z = 0, ta có thể giả sử x = a, y = -a và z = 0, với -1 ≤ a ≤ 1.
Thay các giá trị vào đa thức, ta có:
x^2 + y^4 + z^4 = a^2 + (-a)^4 + 0^4 = a^2 + a^4.
Để tìm giá trị nhỏ nhất của đa thức này, ta xét đạo hàm của nó theo a:
f'(a) = 2a + 4a^3
Để tìm điểm cực tiểu, ta giải phương trình f'(a) = 0:
2a + 4a^3 = 0 a(1 + 2a^2) = 0
Vì -1 ≤ a ≤ 1, nên ta có hai giá trị a = 0 và a = ±1/√2.
Ta tính giá trị của đa thức tại các điểm cực tiểu:
f(0) = 0^2 + 0^4 = 0
f(1/√2) = (1/√2)^2 + (1/√2)^4 ≈ 0.8536
f(-1/√2) = (-1/√2)^2 + (-1/√2)^4 ≈ 0.8536
Như vậy, giá trị nhỏ nhất của đa thức là khoảng 0.8536, lớn hơn 2. Do đó, ta có thể kết luận rằng đa thức x^2 + y^4 + z^4 có giá trị k lớn hơn 2.
Ta có: \(x+y+z=0\); \(x^2+y^2+z^2=a^2\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(\Leftrightarrow a^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=-a^2\)
\(\Leftrightarrow xy+yz+xz=-\frac{a^2}{2}\)
\(\Rightarrow\left(xy+yz+xz\right)^2=\left(-\frac{a^2}{2}\right)^2\)
\(\Leftrightarrow\left(xy\right)^2+\left(yz\right)^2+\left(xz\right)^2+2\left(x^2y+y^2z+z^2x\right)=\frac{a^4}{4}\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=\frac{a^4}{4}\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=\frac{a^4}{4}\)( vì \(x+y+z=0\))
Ta có: \(x^2+y^2+z^2=a^2\)
\(\Rightarrow\left(x^2+y^2+z^2\right)^2=\left(a^2\right)^2\)
\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)=a^4\)
\(\Leftrightarrow x^4+y^4+z^4+2.\frac{a^4}{4}=a^4\)
\(\Leftrightarrow x^4+y^4+z^4+\frac{a^4}{2}=a^4\)
\(\Leftrightarrow x^4+y^4+z^4=a^4-\frac{a^4}{2}=\frac{a^4}{2}\)