K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2020

A+B+C=?

19 tháng 11 2020

Xét tam giác ABC có : ^A + ^B + ^C = 1800 ( đ.lí )

a) Với ^A/2 = ^B/3 = ^C/4

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

^A/2 = ^B/3 = ^C/4 = ( ^A + ^B + ^C )/( 2 + 3 + 4 ) = 1800/9 = 200

=> ^A = 400 ; ^B = 600 ; ^C = 800

b) Với ^A = ^B = ^C ta có ngay ^A = ^B = ^C = 1800/3 = 600

17 tháng 9 2023

a) Tam giác ABC nhọn:

 

b) Tam giác ABC vuông tại A:

 

c) Tam giác ABC có góc A tù:

15 tháng 11 2021

Giống mình làm

 

4 tháng 11 2016

a) \(\widehat{ABC}\) + \(\widehat{BCA}\) = 180\(\widehat{BAC}\) = 180- 80= 1000 

Mà theo đề bài  \(\widehat{ABC}\) - \(\widehat{BCA}\) = 200

Dùng tổng hiệu =>  \(\widehat{ABC}\) = 600

                            \(\widehat{BCA}\)  = 400

b) Áp dụng tính chất dãy tỉ số bằng nhau :

 \(\frac{\widehat{B}}{11}\) = \(\frac{\widehat{C}}{9}\) = \(\frac{\widehat{B}+\widehat{C}}{11+9}\) = \(\frac{180^0-\widehat{A}}{20}\) = \(\frac{180^0-80^0}{20}\) = 5

=> \(\widehat{B}\)= 550 

=> \(\widehat{C}\)= 450

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

Áp dụng hệ thức lượt trong tam giác vuông ta có:

$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$

$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$

$\Rightarrow AC=\sqrt{3}a$

$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$

b.

$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$

$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$

Áp dụng hệ thức lượt trong tam giác vuông:

$AB^2=BH.BC; AC^2=CH.BC$

$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$

Áp dụng định lý Pitago:

$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$

$\Rightarrow AC=\sqrt{3}a$

$\Rightarrow AB=a$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

c. 

Áp dụng hệ thức lượt trong tam giác vuông:

$AB^2=BH.BC$

$\Leftrightarrow AB^2=BH(BH+CH)$

$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$

$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$

$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$

$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$

$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$

d. Tương tự phần a.

17 tháng 9 2023

a)

Nhận xét: H là một điểm nằm trong tam giác ABC.

b)

Nhận xét: H trùng với đỉnh A của tam giác ABC.

c)

Nhận xét: H nằm ngoài tam giác ABC.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Áp dụng công thức: \(S = \frac{1}{2}bc\sin A\), ta có:

\(S = \frac{1}{2}.14.35.\sin {60^o} = \frac{1}{2}.14.35.\frac{{\sqrt 3 }}{2} \approx 212,2\)

Áp dụng đl cosin, ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

\(\begin{array}{l}
\Rightarrow {a^2} = {14^2} + {35^2} - 2.14.35.\cos {60^o} = 931\\
\Rightarrow a \approx 30,5
\end{array}\)

\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{30,5}}{{2\sin {{60}^o}}} \approx 17,6\)

b) Ta có: \(p = \frac{1}{2}.(4 + 5 + 3) = 6\)

Áp dụng công thức Heron, ta có:

\(S = \sqrt {p(p - a)(p - b)(p - c)}  = \sqrt {6(6 - 4)(6 - 5)(6 - 3)}  = 6.\)

Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{4.5.3}}{{4.6}} = 2,5.\)

c: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC=2a\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{a}{a\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{a}{2a}=\dfrac{1}{2}\)

\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2a}{a}=2\)

25 tháng 10 2021

c: \(BC=\sqrt{42^2+36^2}=6\sqrt{85}\left(cm\right)\)

\(\widehat{B}\simeq41^0\)

\(\widehat{C}=49^0\)