Cho tam giác ABC vuông cân tại A. Trên đoạn thẳng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE = CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với AB cắt BI tại K.
a) Chứng minh rằng: Tứ giác EKFC là hình bình hành
b) Qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. CMR: AI = BM
c) CMR: C đối xứng với D qua MF
d) Tìm vị trí của E trên AB để A, I, D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu câu này không biết thì cậu phải học lại Toán lớp 3 đó.
a: ΔBEK vuông tại E có góc EBK=45 độ
nên ΔEBK vuông cân tại E
=>EK=BE=CF
Xét tứ giác EKFC có
EK//FC
EK=FC
=>EKFC là hình bình hành
a/
Ta có
BE=DF (cạnh đối hbh)
BE=CF (gt)
=> CF=DF => tg CDF cân tại F
Ta có
DF//BE => DF//AB mà \(AB\perp AC\Rightarrow DF\perp AC\)
=> tg CDF vuông cân tại F \(\Rightarrow\widehat{FCD}=\widehat{FDC}=45^o\)
Tg ABC vuông cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=45^o\)
\(\widehat{BCD}=\widehat{ACF}-\left(\widehat{ACB}+\widehat{FCD}\right)=180^o-\left(45^o+45^o\right)=90^o\)
\(\Rightarrow DC\perp BC\) (đpcm)
b/
Từ E dựng đường thẳng vuông góc với AB cắt BC tại K
Xét tg vuông BEK có
\(\widehat{BKE}=180^o-\left(\widehat{BEK}+\widehat{ABC}\right)=180^o-\left(90^o+45^o\right)=45^o\)
\(\Rightarrow\widehat{ABC}=\widehat{BKE}=45^o\) => tg BEK cân tại E => BE=KE
Mà BE=CF (gt)
=> KE=CF (1)
Ta có
\(KE\perp AB\)
\(AC\perp AB\Rightarrow CF\perp AB\)
=> KE//CF (2)
Từ (1) và (2) => CEKF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> IE=IF (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tg vuông AEF có
IE=IF (cmt) \(\Rightarrow AI=\dfrac{1}{2}EF\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Mà EF=DB (cạnh đối hbh)
\(\Rightarrow AI=\dfrac{1}{2}DB\) (đpcm)
c/ Gọi N là giao của MI với AF
Xét tg vuông CIN có
\(\widehat{CIN}=180^o-\left(\widehat{ACB}+\widehat{MNF}\right)=180^o-\left(45^o+90^o\right)=45^o\)
\(\Rightarrow\widehat{CIN}=\widehat{ACB}=45^o\) => tg CIN cân tại N => NI=NC (3)
\(MI\perp AF;DF\perp AF\) => MI//DF
BD//EF (cạnh đối hbh) => MD//IF
=> DFIM là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => MI=DF
Mà DF=CF (cmt)
=> MI=CF (4)
Xét tg MNF
Từ (3) và (4) \(\Rightarrow\dfrac{NI}{NC}=\dfrac{MI}{CF}=1\) => CI//MF (Talet đảo trong tam giác) (5)
Từ (4) và (5) => MICF là hình thang cân
d/
Nối D với I, Giả sử A; I; D thẳng hàng
DF//BE (cạnh đối hbh) => DF//AB
\(AI=\dfrac{1}{2}EF\) (cmt) mà IE=IF => AI=IE=IF => tg AIE cân tại I
\(\Rightarrow\widehat{EAI}=\widehat{AEI}\) (6)
Mà \(\widehat{EAI}=\widehat{FDI};\widehat{AEI}=\widehat{DFI}\) (góc so le trong) (7)
Từ (6) và (7) \(\Rightarrow\widehat{FDI}=\widehat{DFI}\) => tg IDF cân tại I
=> ID=IF Mà AI=IE=IF => AI=IE=IF=ID
=> AEDF là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Mà \(\widehat{A}=90^o\)
=> AEDF là hcn \(\Rightarrow DE\perp AB\) (8)
=> AD=EF (đường chéo HCN)
mà EF=BD (cạnh đối HCN)
=> AD=BD => tg ABD cân tại D (9)
Từ (8) và (9) => BE=AE (Trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)
=> E phải là trung điểm của AB thì A, I, D thẳng hàng