1. Voi dieu kien nao cua so huu ti x thi |x| = - x?
2. The nao la ti so cua hai so huu ti? Cho vi du.
3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=a-\frac{3}{2}\)
a) Để x > 0 thì \(a-\frac{3}{2}>0\Leftrightarrow a>\frac{3}{2}\)
b) Để x < 0 thì \(a-\frac{3}{2}< 0\Leftrightarrow a< \frac{3}{2}\)
c) Không là số hữu tỉ âm cũng không là số hữu tỉ dương => Là số 0
=> Để x = 0 thì \(a-\frac{3}{2}=0\Leftrightarrow a=\frac{3}{2}\)
Đơn giản là 2 số chia cho nhau.
VD: Tỉ số của hai số 4 và 2 là: 4:2=2
Tỉ số của 2 số hữu tỉ là thương của 2 số hữu tỉ đó . Ví dụ :
\(\frac{3}{4};\frac{4}{5};\frac{6}{7};......\) ; \(\frac{\frac{3}{4}}{\frac{4}{5}}=\frac{3}{4}:\frac{4}{5}=\frac{3}{4}.\frac{5}{4}=\frac{15}{16}\) ( phân số đó cũng là tỉ số của 2 số hữu tỉ .
a, Để x là số dương thì \(a-3;a\) cùng dấu
\(\Rightarrow\hept{\begin{cases}a-3>0\\a>0\end{cases}}\) hoặc \(\hept{\begin{cases}a-3< 0\\a< 0\end{cases}}\)
\(\left(+\right)\hept{\begin{cases}a-3>0\\a>0\end{cases}\Rightarrow\hept{\begin{cases}a>3\\a>0\end{cases}\Rightarrow}a>3}\)
\(\left(+\right)\hept{\begin{cases}a-3< 0\\a< 0\end{cases}\Rightarrow\hept{\begin{cases}a< 3\\a< 0\end{cases}\Rightarrow}a< 0}\)
Vậy \(a>3\) hoặc \(a< 0\) thì y là số dương
b, Để y là số âm thì \(a-3;a\) trái dấu
\(\Rightarrow\hept{\begin{cases}a-3< 0\\a>0\end{cases}}\) hoặc \(\hept{\begin{cases}a-3>0\\a< 0\end{cases}}\)
\(\left(+\right)\hept{\begin{cases}a-3< 0\\a>0\end{cases}\Rightarrow\hept{\begin{cases}a< 3\\a>0\end{cases}\Rightarrow}0< a< 3}\)
\(\left(+\right)\hept{\begin{cases}a-3>0\\a< 0\end{cases}\Rightarrow\hept{\begin{cases}a>3\\a< 0\end{cases}}}\) (vô lí )
Vậy \(0< a< 3\) thì y là số âm
c, Ta có \(y=\frac{a-3}{a}=\frac{a}{a}-\frac{3}{a}=1-\frac{3}{a}\)
Để y là số nguyên thì \(1-\frac{3}{a}\) nguyên
\(\Leftrightarrow\frac{3}{a}\) nguyên
\(\Rightarrow a\in\text{Ư}\left(3\right)=\left\{-3;-1;1;3\right\}\)
Vậy \(a\in\left\{-3;-1;1;3\right\}\) thì y nguyên
Giải:
a) Ta có \(y=\frac{a-3}{a}=\frac{a}{a}-\frac{3}{a}=1-\frac{3}{a}\rightarrow y=1-\frac{3}{a}\)
Để \(y>0\)thì \(1-\frac{3}{a}>0\rightarrow\frac{3}{a}< 1\Rightarrow a>3\)
b) Để \(y< 0\)thì \(1-\frac{3}{a}< 0\rightarrow\frac{3}{a}>1\rightarrow0< a< 3\)
c) Để \(y\in Z\) ta xét 2 TH :
TH1: \(y=1-\frac{3}{a}=0\)
\(\rightarrow a=3\)
Th2: \(y< 0\)hoặc \(y>0\)
\(\rightarrow\frac{3}{a}\in Z\rightarrow a\inƯ\left(3\right)=\left\{-1,1,-3,3\right\}\)
Kết luận :...
( Vì đề bài chưa đúng cho lắm mong online đừng trừ điểm)
\(x=\frac{a+17}{a}=\frac{a}{a}+\frac{17}{a}=1+\frac{17}{a}.\)
Để x là số nguyên thì \(\frac{17}{a}\)phải là số nguyên
\(\Rightarrow a\inƯ\left(17\right)=\left\{1;17;-1;-17\right\}\)
Vậy nếu \(\Rightarrow a\in\left\{1;17;-1;-17\right\}\)thì x là số nguyên
1.\(x< 0\Rightarrow\left|x\right|=-x\)
2.Tỉ số của 2 số hữu tỉ là a:b hoặc \(\frac{a}{b}\)
VD:Tỉ số của 2 và 7 là:2:7 hoặc \(\frac{2}{7}\)
Chúc bạn học tốt