K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
17 tháng 11 2020

PT\(\Leftrightarrow x^3+2x=\left(2x-1\right)+2\sqrt[3]{2x-1}\)

Đặt \(\sqrt[3]{2x-1}=a\Rightarrow x^3+2x=a^3+2x\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+2\right)=0\Leftrightarrow\orbr{\begin{cases}\left(x^2+ax+a^2+2\right)=0\\x-a=0\end{cases}}\)

dễ thấy phương trình đầu tiên là vô nghiệm

xét \(x=a\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3=2x-1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-1\pm\sqrt{5}}{2}\end{cases}}\)

26 tháng 6 2021

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$

7 tháng 2 2021

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

7 tháng 2 2021

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

25 tháng 9 2021

1) ĐKXĐ: \(x^2+2x-3\ge0\Leftrightarrow\left(x+1\right)^2\ge4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge2\\x+1\le-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)

2) ĐKXĐ: \(2x^2+5x+3\ge0\Leftrightarrow2\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{8}\Leftrightarrow\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{5}{4}\ge\dfrac{1}{4}\\x+\dfrac{5}{4}\le-\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-\dfrac{3}{2}\end{matrix}\right.\)

3) ĐKXĐ: \(x-1>0\Leftrightarrow x>1\)

4) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)

5) ĐKXĐ: \(x+2< 0\Leftrightarrow x< -2\)

6) ĐKXĐ: \(2a-1>0\Leftrightarrow a>\dfrac{1}{2}\)

27 tháng 8 2021

a, \(x+1\ge0\Leftrightarrow x\ge-1\)

b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)

c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)

27 tháng 8 2021

d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)

e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)

19 tháng 6 2023

√(x² + x + 1) = 1

⇔ x² + x + 1 = 1

⇔ x² + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0

*) x + 1 = 0

⇔ x = -1

Vậy x = 0; x = -1

--------------------

√(x² + 1) = -3

Do x² ≥ 0 với mọi x

⇒ x² + 1 > 0 với mọi x

⇒ x² + 1 = -3 là vô lý

Vậy không tìm được x thỏa mãn yêu cầu

--------------------

√(x² - 10x + 25) = 7 - 2x

⇔ √(x - 5)² = 7 - 2x

⇔ |x - 5| = 7 - 2x  (1)

*) Với x ≥ 5, ta có 

(1) ⇔ x - 5 = 7 - 2x

⇔ x + 2x = 7 + 5

⇔ 3x = 12

⇔ x = 4 (loại)

*) Với x < 5, ta có:

(1) ⇔ 5 - x = 7 - 2x

⇔ -x + 2x = 7 - 5

⇔ x = 2 (nhận)

Vậy x = 2

--------------------

√(2x + 5) = 5

⇔ 2x + 5 = 25

⇔ 2x = 20

⇔ x = 20 : 2

⇔ x = 10

Vậy x = 10

-------------------

√(x² - 4x + 4) - 2x +5 = 0

⇔ √(x - 2)² - 2x + 5 = 0

⇔ |x - 2| - 2x + 5 = 0 (2)

*) Với x ≥ 2, ta có: 

(2) ⇔  x - 2 - 2x + 5 = 0

⇔ -x + 3 = 0

⇔ x = 3 (nhận)

*) Với x < 2, ta có:

(2) ⇔ 2 - x - 2x + 5 = 0

⇔ -3x + 7 = 0

⇔ 3x = 7

⇔ x = 7/3 (loại)

Vậy x = 3

18 tháng 6 2023

1)

\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)

3) 

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)

Nếu \(x\ge5\) thì

\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)

=> Loại trường hợp này

Nếu \(x< 5\) thì

\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)

=> Nhận trường hợp này

Vậy x = 2 

4)

\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)

5)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)

Nếu \(x\ge2\) thì

\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)

=> Nhận trường hợp này

Nếu \(x< 2\) thì

\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)

=> Loại trường hợp này

Vậy x = 3

27 tháng 8 2021

Xin lỗi nha câu e) là:

e)\(\sqrt{\left(1-2x\right)^2}=|x-1|\)

27 tháng 8 2021

a) \(\sqrt{2x-1}=3\left(đk:x\ge\dfrac{1}{2}\right)\)

\(\Leftrightarrow2x-1=9\Leftrightarrow2x=10\Leftrightarrow x=5\)(thỏa đk)

b) \(\sqrt{1-3x}=\dfrac{1}{2}\left(đk:x\le\dfrac{1}{3}\right)\)

\(\Leftrightarrow1-3x=\dfrac{1}{4}\Leftrightarrow3x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{4}\)(thỏa đk)

c) \(\sqrt{\left(x-1\right)^2}=\dfrac{1}{2}\)

\(\Leftrightarrow\left|x-1\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}\\x-1=-\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

d) \(\sqrt{\left(1+2x\right)^2}=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left|1+2x\right|=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}1+2x=\dfrac{\sqrt{3}}{2}\\1+2x=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{3}}{4}\\x=-\dfrac{2+\sqrt{3}}{4}\end{matrix}\right.\)

e) \(\sqrt{\left(1-2x\right)^2}=\left|x-1\right|\)

\(\Leftrightarrow\left|1-2x\right|=\left|x-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}1-2x=x-1\\1-2x=1-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=0\end{matrix}\right.\)

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

29 tháng 7 2023

a) \(x-\sqrt{2x+3}=-2x\)

\(\Leftrightarrow\sqrt{2x+3}=x+2x\)

\(\Leftrightarrow\sqrt{2x+3}=3x\)

\(\Leftrightarrow2x+3=9x^2\)

\(\Leftrightarrow9x^2-2x-3=0\)

\(\Rightarrow\Delta=\left(-2\right)^2-4\cdot9\cdot\left(-3\right)=112>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{2+\sqrt{112}}{18}=\dfrac{1+2\sqrt{7}}{9}\\x_2=\dfrac{2-\sqrt{112}}{18}=\dfrac{1-2\sqrt{7}}{9}\end{matrix}\right.\)

b) \(\dfrac{1}{x}=1-\dfrac{1}{x+1}\) (ĐK: \(x\ne0,x\ne-1\))

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{x+1}=1\)

\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}=1\)

\(\Leftrightarrow\dfrac{x+1+x}{x\left(x+1\right)}=1\)

\(\Leftrightarrow\dfrac{2x+1}{x^2+x}=1\)

\(\Leftrightarrow2x+1=x^2+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

29 tháng 7 2023

c) \(\dfrac{2}{\sqrt{x+3}}=\dfrac{1}{\sqrt{x^2-9}}\) (ĐK: \(x\ge3\))

\(\Leftrightarrow2\sqrt{x^2-2}=\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{4\left(x^2-9\right)}=\sqrt{x+3}\)

\(\Leftrightarrow4\left(x^2-9\right)=x+3\)

\(\Leftrightarrow4x^2-36=x+3\)

\(\Leftrightarrow4x^2-x-36-3=0\)

\(\Leftrightarrow4x^2-x-39=0\)

\(\Rightarrow\Delta=\left(-1\right)^2-4\cdot4\cdot\left(-39\right)=625>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{625}}{8}=\dfrac{13}{4}\left(tm\right)\\x_2=\dfrac{1-\sqrt{625}}{8}=-3\left(ktm\right)\end{matrix}\right.\)