cmr:a/c=b/d thì a2+b2/c2+d2=ab/cd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.

\(ac+bd=0\)
\(=\) \(abc^2+abd^2+cda^2+cdb^2\)
\(=\) \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)
\(=\) \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)

\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)

Refer:
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:. a²/4 + c² ≥ ac.
a²/4 + d² ≥ ad.
a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)
=> đpcm.
Dấu " = " xảy ra <=> a/2 = b = c = d = e.
\(\text{Đặt: }\frac{a}{c}=\frac{b}{d}=k\text{ khi đó: }a=ck;b=dk\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{c^2k^2+d^2k^2}{c^2+d^2}=k^2=\frac{ab}{cd}=\frac{ckdk}{cd}=k^2\)
có đpcm
Đặt \(\frac{a}{c}=\frac{b}{d}=k\)
\(\Rightarrow a=ck;b=dk\)
+)\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\frac{c^2.k^2+d^2.k^2}{c^2+d^2}=\frac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\left(1\right)\)
+)\(\frac{ab}{cd}=\frac{ck.dk}{c.d}=\frac{c.d.k^2}{c.d}=k^2\left(2\right)\)
+)Từ (1) và (2)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(=k^2\right)\)
Chúc bạn học tốt