\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{36}+\frac{1}{45}=1\)\(1\)
Tìm: \(a+b+c+d=?\)
Biết a,b,c,d là các số nguyên dương liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=\frac{2013}{1990}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{23}{1990}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{\frac{1990}{23}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{12}{23}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{\frac{23}{12}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{11}{12}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{\frac{12}{11}}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{1+\frac{1}{11}}}}\)
Vậy a = 1; b = 86; c = 1; d = 1; e = 11
Vậy a + b + c + d + e = 1 + 86 + 1 + 1 + 11 = 100
Bạn vàoGiúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bài giải
1 Vì : \(b=\frac{a+c}{2}\)
=> 2b = a+c (1)
\(Vì\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)=>\frac{1}{c}=\frac{1}{2}.\left(\frac{b+d}{bd}\right)=\frac{b+d}{2bd}\)
=> 2bd = c .(b+d) (2)
Vì : 2b = a + c
=> 2bd = b .( a +c )
c.(b+d) = d.(a + c )
\(=>\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
=> \(\frac{c}{d}=\frac{a}{b}\)
Vậy a , b , c , d có thể lập thành một tỉ lệ thức ( đpcm )
2. Áp dụng t/c của dãy tí số bằng nhau , ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
=> 12=6x
=> x= 12 : 6
=> x = 2
Thay số vào ta có : \(\frac{2.2+1}{5}=\frac{3y-2}{7}=\frac{5}{5}=1\)
=> 3y - 2 = 7 . 1 = 7
=> 3y = 7 + 2 = 9
=> y = 3
Vậy : x = 2
y = 3
Ta có:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)(T/C)
\(\Rightarrow6x=12\)
\(\Rightarrow\)x=2
Thay x=2 vào đề ta có:
\(\frac{2\cdot2+1}{5}\)=\(\frac{3y-2}{7}\)=1
\(\Rightarrow3y-2=7\)
3y=9
y=3
Vậy x=2;y=3
Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)
=>A<1/2+1/3=5/6<3/2
lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy
k minh nha
Dễ thấy bài toán này không tồn tại bộ số a,b,c,d thỏa mãn qua cách CM sau
Vì vai trò của a,b,c,d như nhau nên giả sử: \(a>b>c>d\ge1\) \(\left(a,b,c,d\inℤ^+\right)\)
Khi đó ta xét:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}< \frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}=4\)
Mà \(\frac{1}{45}< \frac{1}{36}< 1\) nên ta có:
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{36}+\frac{1}{45}< 4+2=6< 11=VP\)
=> Vô lý
=> PT vô nghiệm