cho A=\(\frac{3}{5^3}+\frac{4}{5^4}+\frac{5}{5^5}+...+\frac{103}{5^{103}}\) CMR A<\(\frac{13}{400}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)
Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)
\(A=\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\)
\(A=5\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)\)
\(\frac{A}{5}=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\)
\(\frac{4A}{5}=1+\frac{1}{4}+...+\frac{1}{4^{98}}\)
\(\frac{4A}{5}-\frac{A}{5}=\left(1+\frac{1}{4}+...+\frac{1}{4^{98}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)\)
\(\frac{3A}{5}=1-\frac{1}{4^{99}}\Rightarrow A=\frac{5}{3}-\frac{5}{3\cdot4^{99}}< \frac{5}{3}\)
câu 1b
Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*
Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d
suy ra: 2(3n-7) chia ht cho d , 3(2n-5) chia ht cho d
suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d
dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1
Vậy......
1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản
Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1
Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) ) = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1
=> \(\frac{3n-7}{2n-5}\) là phân số tối giản
3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)
Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)
=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2
Ta có \(A=\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{102}{5^{102}}+\frac{103}{5^{103}}\)
=> 5A = \(\frac{3}{5^2}+\frac{4}{5^3}+...+\frac{102}{5^{101}}+\frac{103}{5^{102}}\)
Khi đó 5A - A = \(\left(\frac{3}{5^2}+\frac{4}{5^3}+...+\frac{102}{5^{101}}+\frac{103}{5^{102}}\right)-\left(\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{102}{5^{102}}+\frac{103}{5^{103}}\right)\)
=> 4A = \(\frac{3}{5^2}+\left(\frac{1}{5^3}+\frac{1}{5^4}+...+\frac{1}{5^{102}}\right)-\frac{103}{5^{103}}\)
=> 4A = \(\frac{3}{5^2}+\frac{\frac{1}{5^2}-\frac{1}{5^{102}}}{4}-\frac{103}{5^{103}}\)
=> A = \(\frac{3}{5^2.4}+\left(\frac{1}{5^2}-\frac{1}{5^{102}}\right).\frac{1}{16}-\frac{103}{5^{103}.4}\)
=> A = \(\frac{3}{100}+\frac{1}{5^2}.\frac{1}{16}\left(1-\frac{1}{5^{100}}\right)-\frac{103}{5^{103}.4}=\frac{3}{100}+\frac{1}{400}\left(1-\frac{1}{5^{100}}\right)-\frac{103}{5^{103}.4}\)
\(=\frac{3}{100}+\frac{1}{400}-\frac{1}{400.5^{100}}-\frac{103}{5^{103}.4}=\frac{13}{400}-\frac{1}{400.5^{100}}-\frac{103}{5^{103}.4}< \frac{13}{400}\left(\text{ĐPCM}\right)\)
Vậy \(A< \frac{13}{400}\)(đpcm)