Cho hình chữ nhật ABCD đường chéo AC=10cm,AB=8cm từ D kẻ DH vuông góc AC
a) chứng minh∆ABC ~∆AHD
b) chứng minh AD.CH=DC.DH
c) tính tỉ số lượng giác của góc DCH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BC=\(\sqrt{AC^2-AB^2}=6\)
theo hệ thức lượng trong tam giác : \(\frac{1}{DH^2}=\frac{1}{DA^2}+\frac{1}{DC^2}=\frac{25}{576}\)
=> DH=4,8
\(AH=\frac{AB^2}{AC}=3,6\)
ta thấy : \(\frac{AC}{AD}=\frac{10}{6}=\frac{5}{3}\); \(\frac{BC}{AH}=\frac{6}{3,6}=\frac{5}{3}\);\(\frac{AB}{HB}=\frac{8}{4,8}=\frac{5}{3}\)
=> \(\frac{AC}{AD}=\frac{BC}{AH}=\frac{AB}{HB}=\frac{5}{3}\)
=>∆ABC ~∆AHD định lí đảo ta let
b) ta có : ta có : AD.CH=6.(10-3,6)=38,4
DC.DH=8.4,8=38,4
=> AD.CH=DC.DH(=38,4)
ta có sinDCH=\(\frac{AD}{AC}=\frac{6}{10}=\frac{3}{5}\)
cosDHC=\(\frac{DC}{AC}=\frac{8}{10}=\frac{4}{5}\)
=> tan DCH=3/4
cotDCH=4/3
Bạn tham khảo theo đường link:
Câu hỏi của Trần Hữu Lộc - Toán lớp 9 | Học trực tuyến
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có
DB=DC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)
Suy ra: DH=DK(hai cạnh tương ứng)
a: Xét ΔBCE vuông tại C và ΔDBE vuông tại B có
góc E chung
=>ΔBCE đồng dạng với ΔDBE
b: Xét ΔCBD vuông tại C và ΔHCB vuông tại H có
góc CBD=góc HCB
=>ΔCBD đồng dạng với ΔHCB
=>CB/HC=BD/CB
=>BC^2=HC*BD
c: CE=6^2/8=4,5cm
CH//DB
=>ΔEHC đồng dạng với ΔEBD
=>S EHC/S EBD=(EC/ED)^2=(4,5/12,5)^2=81/625
a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có
góc DBA chung
=>ΔAHB đồng dạng với ΔDAB
b: ΔABD vuông tại A có AH vuông góc BD
nên AD^2=DH*BD=DH*AC
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: AMHN là hình chữ nhật
=>AM//HN và AM=HN
AM=HN
HN=NE
Do đó: AM=NE
AM//HN
\(N\in HE\)
Do đó: AM//NE
Xét tứ giác AMNE có
AM//NE
AM=NE
Do đó: AMNE là hình bình hành
a) BC=√AC2−AB2=6AC2−AB2=6
theo hệ thức lượng trong tam giác : 1DH2=1DA2+1DC2=255761DH2=1DA2+1DC2=25576
=> DH=4,8
AH=AB2AC=3,6AH=AB2AC=3,6
ta thấy : ACAD=106=53ACAD=106=53; BCAH=63,6=53BCAH=63,6=53;ABHB=84,8=53ABHB=84,8=53
=> ACAD=BCAH=ABHB=53ACAD=BCAH=ABHB=53
=>∆ABC ~∆AHD định lí đảo ta let
b) ta có : ta có : AD.CH=6.(10-3,6)=38,4
DC.DH=8.4,8=38,4
=> AD.CH=DC.DH(=38,4)
ta có sinDCH=ADAC=610=35ADAC=610=35
cosDHC=DCAC=810=45DCAC=810=45
=> tan DCH=\(\frac{3}{4}\)
cotDCH=\(\frac{4}{3}\)