Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BC=\(\sqrt{AC^2-AB^2}=6\)
theo hệ thức lượng trong tam giác : \(\frac{1}{DH^2}=\frac{1}{DA^2}+\frac{1}{DC^2}=\frac{25}{576}\)
=> DH=4,8
\(AH=\frac{AB^2}{AC}=3,6\)
ta thấy : \(\frac{AC}{AD}=\frac{10}{6}=\frac{5}{3}\); \(\frac{BC}{AH}=\frac{6}{3,6}=\frac{5}{3}\);\(\frac{AB}{HB}=\frac{8}{4,8}=\frac{5}{3}\)
=> \(\frac{AC}{AD}=\frac{BC}{AH}=\frac{AB}{HB}=\frac{5}{3}\)
=>∆ABC ~∆AHD định lí đảo ta let
b) ta có : ta có : AD.CH=6.(10-3,6)=38,4
DC.DH=8.4,8=38,4
=> AD.CH=DC.DH(=38,4)
ta có sinDCH=\(\frac{AD}{AC}=\frac{6}{10}=\frac{3}{5}\)
cosDHC=\(\frac{DC}{AC}=\frac{8}{10}=\frac{4}{5}\)
=> tan DCH=3/4
cotDCH=4/3
a, BC=BH+HC=8BC=BH+HC=8
Áp dụng HTL:
⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)
b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)
Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tanAKB^=ABAK=423=233≈tan490
⇒ˆAKB≈490
Bạn tham khảo theo đường link:
Câu hỏi của Trần Hữu Lộc - Toán lớp 9 | Học trực tuyến