Cho tam giác ABC có diện tích 90cm2
. M là điểm chính giữa cạnh AB. Trên
cạnh AC lấy điểm N sao cho AN = 2NC. Tính diện tích tam giác AMN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{S_{AMN}}{S_{ABN}}=\frac{AM}{AB}=\frac{1}{2}\) (do $M$ là trung điểm $AB$)
\(\frac{S_{ABN}}{S_{ABC}}=\frac{AN}{AC}=\frac{AN}{AN+NC}=\frac{2NC}{2C+NC}=\frac{2NC}{3NC}=\frac{2}{3}\)
Suy ra:
\(\frac{S_{AMN}}{S_{ABN}}\times \frac{S_{ABN}}{S_{ABC}}=\frac{1}{2}\times \frac{2}{3}\)
\(\frac{S_{AMN}}{S_{ABC}}=\frac{1}{3}\)
\(S_{AMN}=\frac{1}{3}\times S_{ABC}=\frac{1}{3}\times 90=30\) (cm2)
Diện tích tam giác AMN là:
160:2:4=20 (cm2)
Đáp số:20 cm2
nối C với M.
tam giác ACM và tam giác ACB cho chung đường cao hạ tự điểm C xuống cạnh AB. đáy \(AM=\frac{1}{2}\)đáy AB (là điểm chính giữa của cạnh AB)
\(\Rightarrow S_{\left(ACM\right)}=\frac{1}{2}.S_{\left(ABC\right)}=\frac{1}{2}.60=80\left(cm^2\right)\)
xét tam giác AMN và tam giác ACM có chung chiều cao hạ từ M xuống cạnh AC; đáy \(AN=\frac{1}{4}\)đáy AC
\(\Rightarrow S_{\left(AMN\right)}=\frac{1}{4}.S_{\left(ACM\right)}=\frac{1}{4}.80=20\left(cm^2\right)\)